Hadoop集群搭建HA高可用版

Hadoop HA搭建

前提需要

准备三台虚拟机

创建三台虚拟机,主机名分别更改为hadoop01,hadoop02,hadoop03

Hadoop部署如下

主机名

主机IP

hadoop01

192.168.197.101

hadoop02

192.168.197.102

hadoop03

192.168.197.103

以下更改主机名,配置网络,关闭防火墙,关闭selinux,时间同步,主机映射和免密登录三台虚拟机都要进行,不同的是主机名和IP地址,其余配置信息都相同

更改主机名

为了便于集群管理,需要更改主机名

永久修改主机名命令为:hostnamectl set-hostname 主机名

刷新命令:bash

例:hostnamectl set-hostname hadoop01

配置网络

为了便于使用和管理,需要配置静态IP

步骤如下

1.打开”虚拟网络编辑器”

 

2.查看网关

 

  1. 配置静态IP

进入网络配置文件,进行修改,命令如下:

sudo vim /etc/sysconfig/network-scripts/ifcfg-ens33

需要将原本的BOOTPROTO="dhcp"改为BOOTPROTO="static"

再添加IP地址,自行设置,前面的部分要与网关一致,最后一位的主机号可随意,建议三台主机分别设置为101,102,103

再添加网关,即前面查看到的网关

再添加子网掩码,一般都为255.255.255.0

最后添加DNS域名解析,可设为8.8.8.8或8.8.4.4或114.114.114.114

注意ONBOOT是否等于yes,将它设置为yes开机自启

 

保存退出

重启网络

重启网络命令:systemctl restart network.service

  1. 测试网络环境

可以用ping命令是否能够ping通

可以分别ping 主机IP

ping www.baidu.com

如果能够ping通,即完成网络配置

如下情况

关闭防火墙

为了三台服务器能够互相通信,需要关闭防火墙

  1. 查看防火墙状态

 命令:systemctl status firewalld.service

可以看到防火墙开启状态

 

  1. 关闭防火墙

命令: systemctl stop firewalld.service

设置为开机关闭防火墙

 systemctl disable firewalld.service

  1. 检查是否关闭完成

 systemctl status firewalld.service

可以看到我们的防火墙已经关闭了

关闭selinux

为了避免安装过程出现各种错误,建议关闭

selinux有两种状态,一个是Enforcing,为开启状态,一个是Permissive,为关闭状态

  1. 查看selinux状态

命令:getenforce

如下图可以看到当前状态是开启的

  1. 临时关闭(不建议,重启之后就会失效)

命令:sudo setenforce 0

再次执行getenforce可以看到状态已经改成Permissive关闭状态了

3.永久关闭(建议)

修改配置文件selinux

命令:sudo vim /etc/selinux/config

或:sudo vim /etc/sysconfig/selinux

修改之后如下:

时间同步

为了防止服务器之间因时间的不同而导致出现问题,建议同步网络时间

  1. 安装时间服务,如果已有,无需安装(三台都需要)

查看是否安装命令:rpm -q ntp ntpdate

如果没有安装,则执行以下命令

命令:yum install ntpdate ntp

再次查看:rpm -q ntp ntpdate

  1. 修改本机时间

命令:cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime

  1. 同步网络时间

命令:ntpdate cn.pool.ntp.org

4.集群时间同步

命令:ntpdate hadoop01

都与hadoop01同步时间

  1. 这时候发现节点间的时间同步了,但ntpdate只在开机运行,我们若要设置为1小时同步一次

命令:crontab -l

主机IP映射

为了便于集群管理,需要将三台服务器的主机名和IP做映射关系

首先进入所在文件目录,进行编辑,命令如下:

sudo vim /etc/hosts

将主机ip和主机名一一对应写入进去

设置如下

免密登录

为了便于集群之间的互联通信,需要进行免密登录的操作,可以减少输入密码次数,避免重复输入密码

1.输入命令:ssh-keygen -t rsa

2.然后连续按四下回车,出现如下就ok了

  1. 进入ssh目录,命令如下

cd  ~/.ssh

然后ls或ll查看,可以发现有两个文件

5.拷贝公钥

复制ssh生成的本地公钥至远程服务器,命令如下:

cp id_rsa.pub authorized_keys

扩展:id_rsa为私钥,id_rsa.pub为公钥

  1. 本机测试

命令:ssh localhost

如果不需要输入密码说明已经完成好免密设置

安装以下组件,需要下载jdk,hadoop,zookeeper安装包至Downloads目录

cd Downloads进入下载目录

ll命令可以看到如下安装包

Java安装

  1. 卸载系统自带的默认jdk

先查看系统自带的jdk,命令:rpm -qa|grep jdk

可以看到有三个jdk,需要全部卸载

执行sudo yum remove 要卸载的jdk软件包名即可卸载

sudo yum remove java-1.8.0-openjdk-headless.x86_64 copy-jdk-configs.noarch java-1.8.0-openjdk*

再次查看就会发现已经卸载完了

  1. 解压jdk的tar.gz包

命令:tar -zxvf jdk* -C /usr/local/

tar -zxvf 安装包名 -C 指定安装目录

这里我将Java安装在/usr/local下,如果不加-C和后面的目录参数,则默认安装在当前目录

  1. 重命名

cd /usr/local 进入到java的安装目录

mv jdk* java进行重命名

  1. 配置jdk的环境变量

执行命令:vim ~/.bashrc

写下如下内容,将Java的安装目录添加进去

保存退出

source ~/.bashrc 使其配置生效

java -version命令就可以查看到安装好的Java版本了

Hadoop安装

1.同Java,先mv重命名为hadoop

之后配置hadoop环境变量,如下

source ~/.bashrc刷新使其配置生效

2.执行hadoop version查看hadoop版本

3.配置Hadoop配置文件

slaves文件

core-site.xml

<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://mycluster</value>
    </property>

    <property>
        <name>hadoop.tmp.dir</name>
        <value>/usr/local/hadoop/tmp</value>
    </property>

    <property>
        <name>ha.zookeeper.quorum</name>
        <value>hadoop01:2181,hadoop02:2181,hadoop03:2181</value>
    </property>

    <property>
        <name>ha.zookeeper.session-timeout.ms</name>
        <value>30000</value>
    </property>

    <property>
        <name>fs.trash.interval</name>
        <value>1440</value>
    </property>
</configuration>

hdfs-dfs.xml

 

<configuration>
    <property>
        <name>dfs.permissions.enabled</name>
        <value>false</value>
    </property>

    <property>
        <name>dfs.replication</name>
        <value>2</value>
    </property>

    <property>
        <name>dfs.nameservices</name>
        <value>mycluster</value>
    </property>

    <property>
        <name>dfs.ha.namenodes.mycluster</name>
        <value>hadoop01,hadoop02</value>
    </property>

    <property>
        <name>dfs.namenode.rpc-address.mycluster.hadoop01</name>
        <value>hadoop01:9000</value>
    </property>

    <property>
        <name>dfs.namenode.rpc-address.mycluster.hadoop02</name>
        <value>hadoop02:9000</value>
    </property>

    <property>
        <name>dfs.namenode.http-address.mycluster.hadoop01</name>
        <value>hadoop01:50070</value>
    </property>

    <property>
        <name>dfs.namenode.http-address.mycluster.hadoop02</name>
        <value>hadoop02:50070</value>
    </property>

    <property>
        <name>dfs.namenode.shared.edits.dir</name>
        <value>qjournal://hadoop01:8485;hadoop02:8485;hadoop03:8485/mycluster</value>
    </property>

    <property>
        <name>dfs.ha.automatic-failover.enabled</name>
        <value>true</value>
    </property>

    <property>
        <name>dfs.client.failover.proxy.provider.mycluster</name>       <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>

    <property>
        <name>dfs.ha.fencing.methods</name>
        <value>
            sshfence
            shell(/bin/true)
        </value>
    </property>

    <property>
        <name>dfs.ha.fencing.ssh.private-key-files</name>
        <value>/home/miemiemie/.ssh/id_rsa</value>
    </property>

    <property>
        <name>dfs.ha.fencing.ssh.connect-timeout</name>
        <value>30000</value>
    </property>

    <property>
        <name>dfs.journalnode.edits.dir</name>
        <value>/usr/local/hadoop/tmp/dfs/journal</value>
    </property>

    <property>
        <name>dfs.qjournal.start-segment.timeout.ms</name>
        <value>60000</value>
    </property>
</configuration>

mapred.site-xml

<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>

    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>hadoop01:10020</value>
    </property>

    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>hadoop01:19888</value>
    </property>
</configuration>

yarn-site.xml

 

 <configuration>
    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>

    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>yrc</value>
    </property>

    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm1,rm2</value>
    </property>

    <property>
        <name>yarn.resourcemanager.hostname.rm1</name>
        <value>hadoop01</value>
    </property>

    <property>
        <name>yarn.resourcemanager.hostname.rm2</name>
        <value>hadoop02</value>
    </property>

    <property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>hadoop01:2181,hadoop02:2181,hadoop03:2181</value>
    </property>

    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>

    <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
    </property>

    <property>
        <name>yarn.log-aggregation.retain-seconds</name>
        <value>86400</value>
    </property>

    <property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
    </property>

    <property>
        <name>yarn.resourcemanager.store.class</name>        <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
    </property>
</configuration>

Zookeeper安装

1.同Java和Hadoop安装,重命名之后配置环境变量,之后source生效

2.进入zookeeper目录

进入zookeeper下的conf目录,拷贝zoo_sample.cfg并改名为zoo.cfg

  1. 配置zoo.cfg文件

修改如下

server.X = hadoop0N:2888:3888中,节点N所对应的数字X。因此hadoop01、hadoop02、hadoop03中myid文件内容分别是数字1,2,3

  1. 创建文件

回到zookeeper目录,创建zkData目录,命令:mkdir zkData

之后echo 1> myid

将1写入myid文件,如下

5.节点分发

上述配置可以在一台节点机器上配置完成,然后通过scp命令远程传输到另外两台数据节点机器上,只需修改myid文件里的对应的数字即可,同时将/etc/hosts和java,hadoop以及~/.bashrc的环境变量配置文件也分发过去。例如我在hadoop01上配置完成的,传输至hadoop02,hadoop03

sudo scp -r /usr/local/zookeeper root@hadoop02:/usr/local/

sudo scp -r /usr/local/zookeeper root@hadoop03:/usr/local/

sudo scp -r /usr/local/java root@hadoop02:/usr/local/

sudo scp -r /usr/local/java root@hadoop03:/usr/local/

sudo scp -r /usr/local/hadoop root@hadoop02:/usr/local/

sudo scp -r /usr/local/hadoop root@hadoop03:/usr/local/

sudo scp  /etc/hosts root@hadoop02:/etc/

sudo scp  /etc/hosts root@hadoop03:/etc/

sudo scp ~/.bashrc miemiemie@hadoop02:/home/miemiemie/

sudo scp ~/.bashrc miemiemie@hadoop03:/home/miemiemie/

以上Java和zookeeper的是分发到root用户下的,所以要分别进入两台虚拟机将所有权限改为使用的用户的,比如我的用户是miemiemie,这里我将hadoop02和hadoop03使用sudo chown -R miemiemie:miemiemie java和sudo chown -R miemiemie:miemiemie zookeeper和sudo chown -R miemiemie:miemiemie hadoop命令

分别进入zookeeper下的zkData目录,将myid分别改为2和3

即:

节点

myid

用户权限

hadoop01

1

miemiemie

hadoop02

2

miemiemie

hadoop01

3

miemiemie

格式化hadoop

hdfs namenode -format

格式化zookeeper

hdfs zkfc -formatZK

启动zookeeper

zkServer.sh start或hadoop-daemon.sh start zkfc

启动hdfs

start-dfs.sh

启动journalnode

hdfs --daemon start journalnode

启动yarn

start-yarn.sh

启动jobhistory

mr-jobhistory-daemon.sh history start

获取一个namenode节点的HA状态

hdfs haadmin -getServiceState hadoop01

查看hdfs的各节点状态信息

hdfs dfsadmin -report

查看进程jps

进入hdfs或yarn的web页面

HDFS web页面 192.168.197.101:50070或192.168.197.102:50070
YARN web页面 192.168.197.101:8088

 

至此,Hadoop的HA高可用版已经搭建完成

问题:

在编辑文件的时候出现”只读”,没有权限且加了sudo出现

“不在 sudoers 文件中。此事将被报告。”问题

解决:

将当前用户添加到sudoers文件中

  1. 切换root用户
  2. 命令:visudo

在大概100行左右,找到root ALL=(ALL) ALL这个位置,

将自己的用户添加进去,格式与root一致,如下设置

 

 之后保存退出,再切换回自己的用户即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bug智造

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值