数字图像处理第4章-频率域滤波

4.1 基本概念

傅里叶级数:f(t)=\sum_{n=-\infty}^\infty{c}_n\mathrm{e}^{j\frac{2\pi n}{T}t},其中c_n=\dfrac{1}{T}\int_{-T/2}^{T/2}f(t)\mathrm{e}^{-j\dfrac{2\pi n}{T}t}\mathrm{d}t,\quad n=0,\pm1,\pm2,\cdots

单位连续冲击:\delta(t)=\begin{cases}\infty,&t=0\\ 0,&t\neq0\end{cases}

单位离散冲击:\delta(x)=\begin{cases}1,&x=0\\ 0,&x\neq0\end{cases}

连续单变量函数的傅里叶变换和反变换:
        F(\mu)=\mathfrak{I}\{f(t)\}=\int_{-\infty}^{\infty}f(t)\mathrm{e}^{-\mathrm{j}2\pi\mu t}\mathrm{d}t=\int_{-\infty}^{\infty}f(t)\big[\cos(2\pi\mu t)-\mathrm{j}\sin(2\pi\mu t)\big]\mathrm{d}t
        f(t)=\mathfrak{J}^{-1}\big\{F(\mu)\big\}=\int_{-\infty}^{\infty}F(\mu)\mathrm{e}^{j2\pi\mu t}\mathrm{d}\mu

变量单位(频率域的单位是输入函数自变量每秒的周期数)
t\mu
周期数/秒,赫兹(Hz)
周期数/米

4.2 取样和取样函数的傅里叶变换

冲激串 s_{\Delta T}(t)=\sum_{k=-\infty}^{\infty}\delta(t-k\Delta T),表示为傅里叶级数:{s}_{\Delta T}(t)=\dfrac{1}{\Delta T}\sum_{n=-\infty}^\infty\mathrm{e}^{j\frac{​{2}\pi n}{\Delta T}t}
傅里叶变换结果:\tiny S(\mu)=\mathfrak{I}\{s_{\Delta T}(t)\}=\mathfrak{I}\bigg\{\dfrac{1}{\Delta T}\sum_{n=-\infty}^\infty\mathbf{e}^{j\frac{2\pi n}{\Delta T}t}\bigg\}=\frac{1}{\Delta T}{\mathfrak{I}}\biggl\{\sum_{n=-\infty}^{\infty}\mathrm{e}^{j{\frac{​{2\pi n}}{\Delta T}}t}\biggr\}=\frac{1}{\Delta T}\sum_{n=-\infty}^{\infty}\delta\biggl(\mu-\frac{n}{\Delta T}\biggr)
周期为\Delta T的冲激串的傅里叶变换仍然是冲激串,其周期为\dfrac{1}{\Delta T},这种反比关系非常重要。

卷积定理:(1)(2)

对离散变量也成立,不同的是(2)的右侧要乘以系数(1/M),M是离散样本的数量。

取样后函数\tilde{f}(t)=\sum_{n=-\infty}^{\infty}f(t)\delta(t-n\Delta T)的使用卷积定理得傅里叶变换:\tilde{F}(\mu)=\dfrac{1}{\Delta T}\sum_{n=-\infty}^{\infty}F\biggl(\mu-\dfrac{n}{\Delta T}\biggr),使用傅里叶变换定义计算得到其表达式为:\tilde{F}(\mu)=\sum\limits_{n=-\infty}^\infty f_n\mathrm{e}^{-j2\pi\mu n\Delta T}是周期为\small \dfrac{1}{\Delta T}的无限连续函数。

带限函数:对于以原点为中心的有限区间(带宽)-[\mu_{max},\mu_{max}]外的频率值,傅里叶变换为零的函数f(t)。有限持续时间函数不可能带限(一个重要的特例是从-∞扩展到∞的函数是带限的和周期性的时候。在这种情况下,函数被截断后仍然是带限的,只要截断精确地包含完整的整数周期。单个截断周期(和函数)可用一组在截断区间上满足取样定理的离散样本来表示。

取样定理:如果以超过函数最高频率2倍(\small \dfrac{1}{\Delta T}>2\mu_{\mathrm{max}})的取样率(对单位自变量所取的样本数)来得到样本,那么连续带限函数就能够完全由其样本集合复原。反之,以\small \dfrac{1}{\Delta T}的取样率对信号取样得到的最大频率是\small \mu_{\mathrm{max}}=1/2\Delta T
混叠:混叠是指取样后不同信号变得彼此无法区分的取样现象,或者一个信号“伪装”成另一个信号的现象。产生原因是取样率太粗。尽管处理有限长度的取样记录时不可避免地会出现混叠,但通过平滑(低通滤波)输人函数来衰减其高频,可以降低混叠的影响,这个称为反混叠的过程须在对函数取样之前完成。

重建(复原)函数:
(1)先由{\tilde{F}}(\mu)乘以H(\mu)得到{​{F}}(\mu),然后傅里叶反变换得到f(t)
(2)先用卷积定理直接变换F(\mu)=H(\mu)\tilde{F}(\mu),使用卷积定义得到f(t)=\sum_{n=-\infty}^{\infty}f(n\Delta T)\mathrm{sinc}\big[(t-n\Delta T)/\Delta T\big],因为sinc函数的性质,所以f(k\Delta T)等于采样函数\tilde{f}(t)第k个样本,但是f(t)的其他值需要求无限数量的项的和,称为样本之间的内插,实际处理中采取近似方法。

4.3 单变量的离散傅里叶变换

离散傅里叶变换(DFT):处理有限数量(n=M个)的样本。
DFT:F_m=\sum_{n=0}^{M-1}f_n\mathrm{e}^{-\mathrm{j}2\pi mn/M},\quad m=0,1,2,\cdots,M-1,周期为M
IDFT:f_n=\dfrac{1}{M}\sum_{m=0}^{M-1}F_m\mathrm{e}^{j2\pi mn/M},\quad n=0,1,2,\cdots,M-1,周期为M
(往后采用x表示n,u表示m)

循环卷积:

取样间隔\Delta T和频率间隔\Delta u取样总长度T=M\Delta T,DFT的M个分量跨越的频率范围:R=M\Delta u={\frac{1}{\Delta T}}

4.4 二变量的离散傅里叶变换

下面拓展到两个变量的情况(二变量函数的傅里叶变换),使用(t,z)(\mu,v)表示二维连续空间变量和频率域变量,使用(x,y)(u,v)表示离散空间变量和频率域变量。

二维连续傅里叶变换对:

F(\mu,\nu)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(t,z)\mathrm{e}^{-j2\pi(\mu t+\nu z)}\mathrm{d}t\mathrm{d}z
f(t,z)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}F(\mu,\nu)\mathrm{e}^{j2\pi(\mu t+\nu z)}\mathrm{d}\mu\mathrm{d}\nu

二维冲激串:s_{\Delta T\Delta Z}(t,z)=\sum_{m=-\infty}^\infty\sum_{n=-\infty}^\infty\delta(t-m\Delta T,z-n\Delta Z)

二维带限函数:在区间\left[-\mu_{\max},\mu_{\max}\right]\left[-v_{\max},v_{\max}\right]建立的频率域矩形之外,函数f(t,z)的傅里叶变换为零。

二维取样定理:若取样率满足\dfrac{1}{\Delta T}>2\mu_{\mathrm{max}}\dfrac{1}{\Delta{Z}}>2\nu_{\mathrm{max}},则连续带限函数f(t,z)可由其一组样本无误地复原。

图像中的混叠表现为两种形式:空间混叠(与动态图像序列中图像间的时间间隔有关,车轮效应)时间混叠(引入伪影,如原图像中未出现的线条锯齿、虚假高光和频率模式)

莫尔模式:在光学中,莫尔模式是由近似等间隔的两个光棚叠加所产生的一种视觉现象。

二维离散傅里叶变换:
DFT:F(u,v)=\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}{f}(x,y)\mathrm{e}^{-j2\pi(ux/M+vy/N)}
IDFT:f(x,{y})=\dfrac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}F({u},v)\mathrm{e}^{j2\pi(ux/M+vy/N)}

4.5 二维DFT和IDFT的一些性质

二维离散傅里叶变换性质:
空间间隔和频率间隔:\Delta u=\dfrac{1}{M\Delta T}\Delta{\nu}=\dfrac{1}{N\Delta Z},成反比关系
平移:f(x,y)\mathrm e^{j2\pi(u_0x/M+v_0y/N)}\Leftrightarrow F(u-u_0, v-v_0)f(x-x_{0},y-y_{0})\Leftrightarrow F(u,v)\mathrm{e}^{-j2\pi(x_{0}u/M+y_{0}\nu/N)}
旋转:使用极坐标x=r\cos\theta, y=r\sin\theta, u=\omega\cos\varphi, v=\omega\sin\varphi,得{f}(r,\theta+\theta_0)\Leftrightarrow F(\omega,\varphi+\theta_0)
周期性:\begin{array}{l}F(u,v)=F(u+k_1M,v)=F(u,v+k_2N)=F(u+k_1M,v+k_2N)\\ \\ f(x,y)=f(x+k_1M,y)=f(x,y+k_2N)=f(x+k_1M,y+k_2N)\end{array}k_1k_2是整数。
对称性:表格中奇偶性的定义为w_e(x,y)= w_e(M-x,N-y){w}_o\bigl(x,y\bigr)=-w_o\bigl(M-x,{N}-y\bigr)

二维DFT通常是复函数,可用极坐标表示为F(u,v)=R(u,v)+\text{j}I(u,v)=\left|F(u,v)\right|\mathrm{e}^{j\phi(u,v)}
幅度:\left|F(u,v)\right|=\left[\begin{matrix}R^2(u,v)+I^2(u,v)\end{matrix}\right]^{1/2}称为傅里叶频谱(包含图像灰度信息)
相角:\phi(u,v)=\arctan\left[\dfrac{I(u,v)}{R(u,v)}\right]称为相位谱(包含图像形状特征)
功率谱:P(u,v)=\left|F(u,v)\right|^{2}=R^{2}(u,v)+I^{​{2}}(u,v)
频谱关于原点偶对称\left|F(u,v)\right|=\left|F(-u,-v)\right|
相角关于原点奇对称\phi(u,\nu)=-\phi(-u,-\nu)
DFT的零频率项与f(x,y)的平均值成正比\left|F(0,0)\right|=MN\left|\overline{f}\right|

二维循环卷积:

二维卷积定理:(1)(2)

使用卷积定理计算空间域卷积时,因为DFT自带的周期性,会产生交叠错误,要填充0,若取样区间的末尾不是0,填充0会导致函数不连续,会产生频率泄露。二维情况下方法如下:

4.5小结:

4.6 频率域滤波基础

频率域基本滤波公式:g({x},y)=\operatorname{Real}\left\{\mathfrak{J}^{-1}\left[H(u,v)F(u,v)\right]\right\}
说明:若H是实对称函数,f是实函数(通常如此),则式中的IDFT理论上应生成实数量。实际上,这个反变换通常包含有由舍入误差和其他不精确计算导致的寄生复数项。因此,我们通常取IDFT的实部来形成函数g。使用中心对称的函数,可大大简化规定H(u,v)的任务,这一任务要求Fu, v)也中心化,这是在计算变换之前,用\left(-1\right)^{x+y}乘以输入图像来完成的。不对变换中心化必须排列滤波器函数,使其与未中心化的变换(即原点位于左上角)对应相同的数据格式。这样做的后果是生成和显示滤波器传递函数更加困难。

零相移滤波器:对实部和虚部的影响相同且对相角无影响的滤波器

频率域滤波小结:

4.7 使用低通频率域滤波器平滑图像

理想低通滤波器、巴特沃斯低通滤波器、高斯低通滤波器。

4.8 使用高通滤波器锐化图像

理想高通滤波器、巴特沃斯高通滤波器、高斯高通滤波器。

4.9 选择性滤波

带阻滤波器、带通滤波器、限波滤波器。

4.10 快速傅里叶变换

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数字图像处理是指利用计算机对数字图像进行处理和分析的过程。而MATLAB是一种常用的图像处理工具,且具有强大的图像处理功能。 图像滤波数字图像处理中常用的一种处理方法,它可以用于图像降噪和图像增强等多个方面。其中,高斯噪声和椒盐噪声是常见的两种图像噪声,而高斯滤波和中值滤波则是两种常用的图像滤波算法。 高斯噪声是一种服从高斯分布的随机噪声,会对图像的亮度和颜色造成影响。在MATLAB中,可以通过调用imnoise函数来为图像添加高斯噪声。对于已经添加了高斯噪声的图像,可以使用高斯滤波来进行滤波处理。高斯滤波基于高斯函数,将图像中每个像素点的值根据其邻内像素的值进行加权平均。 椒盐噪声是指在图像中随机出现的白点和黑点,会对图像的质量造成较大的影响。同样,在MATLAB中可以通过imnoise函数为图像添加椒盐噪声。针对添加了椒盐噪声的图像,可以使用中值滤波进行滤波处理。中值滤波是基于中值运算,将图像中每个像素点的值替换为邻内像素的中值。 总的来说,基于MATLAB的数字图像处理中,图像滤波算法可以用于去除图像中的噪声,提升图像的质量。高斯滤波适用于去除高斯噪声,中值滤波适用于去除椒盐噪声。在实际应用中,可以根据图像的噪声类型选择合适的滤波算法以达到更好的滤波效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值