结论
- 用户数是影响每小时租车数的关键因素,其中注册用户数与每小时租车数相关系数0.97,与每小时租车数高度相关,可以通过拉新获客提升租车数
- 温度和湿度对每小时租车数也会产生影响,20-40温度之间是用户租车比较偏好的温度,湿度80以上用户租车的意愿明显减弱,在选择共享单车运营区域时可以考虑该地的温度和湿度条件。
- 一天中7:00-9:00、17:00-18:00两个时段明显高于其他时段,集中在上下班高峰期且下午段高于上午段。在这些时段需要加强调控和运营保证车辆供给。
- 不同天气和季节租车数表现出明显差异,雨雪天气和春冬两季租车数相对较低,且春冬季节工作日租车数较非工作日略高,在温度和湿度相对适宜的夏秋,工作日和非工作日表现基本持平。
1、相关性分析
- 注册用户个数和非注册用户数与每小时总租车数高度正相关,相关系数分别为0.97和0.69,用户数对租车数强正相关与预期相符
- 温度与体感温度与每小时总租车数呈弱正相关,与非注册用户数表现的正相关略高于注册用户数,温度和体感温度可能通过影响用户数进而影响租车数
- 注册用户数、非注册用户数、每小时总租车数与湿度呈现弱负相关,说明湿度越大,用户租车意愿越弱;
- 湿度与风速表现弱负相关,与天气表现弱正相关,随着风速越大,湿度越低,雨雪天气越恶劣湿度越大,但风速与天气无明显相关性;
- 工作日与非注册用户数呈现弱负相关,与注册用户数表现极弱正相关。说明影响注册用户数是否工作日非主要因素。
2、分维度租车数分布情况
- 从季节来看夏天和秋天租车数整体略高于春天和冬天,进一步探查数据与地区温度相关,整体温度呈现夏秋高于春冬,春天低于冬天。
- 从每天时间来看,租车数7:00-9:00、17:00-18:00两个时段明显高于其他时段,集中在上下班高峰期且下午段高于上午段。
- 从天气来看,不同天气表现出来明显的差异,天气恶劣情况直接影响租车数,晴天和阴雾天租车数基本持平,雨雪天租车数大幅下降。
- 不同月份的租车数受温度影响与季节趋势保持一致,周末租车数略低于工作日,是否周末非影响租车数的关键因素。
3、交叉探索性分析
适宜租车的温度和湿度区间探索
- 对于不同温度而言,30度到40度每小时平均租车数最多,在10度以上租车数大幅度提升,40度以上租车数开始降低,说明温度是影响租车数的关键因素,比较适宜的温度是20度到40度之间。
- 非节假日期间,20度到30度每小时平均租车数高于节假日期间,节假日期间,30度到40度每小时平均租车数高于非节假日期间。对于不同温度区间,是否节假日表现出明显不同的租车偏好。
- 对于不同湿度而言,20-40的湿度区间内每小时平均租车数最多,湿度高于80每小时平均租车数出现明显下降,湿度低于60非节假日期间每小时平均租车数高于节假日期间。
月维度节假日及工作日对租车数影响
- 是否节假日对于租车数来说差异不明显,7月和9月表现出是否节假日每小时平均租车数存在差异,推测与暑期相关,其他月份基本持平。
- 是否工作日每小时平均租车数在春、冬两季表现出些微差异,工作日略高于非工作日,考虑春、冬温度对用户租车意愿的影响,工作日的必要租车使得数据表现略高。夏、秋除6月份以外基本持平,推测6月份与毕业季相关。
用户数与租车数线性回归分析
- 对可能影响租车数的变量进行主成分分析降维,降维之后提取出来两个因子,分别与注册用户数、非注册用户数高度相关,利用降维之后的数据对租车数利用进行线性回归,注册用户数斜率为1.1597,非注册用户数斜率为0.7899,并且通过了统计学意义上的显著性建议,说明用户数是影响租车数的关键因素。
线性回归结果:
备注说明:
- 数据来源:kaggle 某城市_共享单车2011年到2012年的公开数据集_
- 数据字段及含义:
datatime - 日期+时间_
season -
1=春天
2=夏天
3=秋天
4=冬天
holiday - 是否是节假日
workingday -
1=工作日
0=周末
weather -
1:晴天,多云
2:雾天,阴天
3:小雪,小雨
4:大雨,大雪,大雾
temp - 气温摄氏度
atemp - 体感温度
humidity - 湿度
windspeed - 风速
casual - 非注册用户个数
registered - 注册用户个数
_count - 给定日期时间(每小时)总租车人数