博文配套视频课程:24小时实现从零到AI人工智能
加载共享单车数据
时间序列(或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列。时间序列分析的主要目的是根据已有的历史数据对未来进行预测
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
data = pd.read_csv("../data/bike.csv")
# 首先把datetime转化为日期类型
data['datetime'] = pd.to_datetime(data['datetime'])
data.info()
时间序列为索引
data.set_index('datetime',inplace=True)
print(data.head(n=3))
# 按月进行采样,获取每月总租赁数据
ss = data.resample('M')['count'].sum()
data_2011 = ss['2011']
data_2012 = ss['2012']
print(data_2011,data_2012)
# 生成月份的x轴数据
attr = [f'{i}月' for i in range(1,13)]
v1 = data_2011.values
v2 = data_2012.values
柱状图显示相关的租赁数据
plt.bar(attr,v1,label='2011月份租赁')
plt.bar(attr,v2,bottom=v1,label='2012月份租赁')
plt.xlabel('月份')
plt.ylabel('租赁总量')
plt.legend()
plt.show()