一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7
输出:28
示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向下 -> 向下
- 向下 -> 向下 -> 向右
- 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3
输出:28
示例 4:
输入:m = 3, n = 3
输出:6
/**
* @param {number} m
* @param {number} n
* @return {number}
*/
var uniquePaths = function(m, n) {
var memo = [];
for(var i = 0; i < n; i++){
memo.push([]);
}
// 把第一行设置为1
for(var row = 0; row < n; row++){
memo[row][0] = 1;
}
// 把第一列设置为1
for(var col = 0; col < m; col++){
memo[0][col] = 1;
}
//使用动态规划
for(var row = 1; row < n; row++){
for(var col = 1; col < m; col++){
memo[row][col] = memo[row -1][col] + memo[row][col -1];
}
}
return memo[n-1][m-1];
};