LeetCode---62. 不同路径

该博客探讨了一种使用动态规划算法来计算机器人在给定网格中从左上角到右下角的不同路径数量的问题。示例展示了不同输入参数下的路径总数,并提供了实现该算法的代码片段,其核心是通过填充矩阵来计算每一步的可行路径数量。
摘要由CSDN通过智能技术生成

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?
示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3

解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

/**
 * @param {number} m
 * @param {number} n
 * @return {number}
 */
var uniquePaths = function(m, n) {
    var memo = [];
    for(var i = 0; i < n; i++){
        memo.push([]);
    }
    // 把第一行设置为1
    for(var row = 0; row < n; row++){
        memo[row][0] = 1;
    }
    // 把第一列设置为1
    for(var col = 0; col < m; col++){
        memo[0][col] = 1;
    }
    //使用动态规划
    for(var row = 1; row < n; row++){
        for(var col = 1; col < m; col++){
            memo[row][col] = memo[row -1][col] + memo[row][col -1];
        }
    }
    return memo[n-1][m-1];
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值