手工设计特征方法是指在目标检测算法中,通过人工设计图像特征来识别目标物体的算法。相对于基于深度学习的方法,手工设计特征方法需要对图像特征进行人工选择和设计,需要大量的专业知识和经验,但在一些场景中仍然有广泛的应用。
下面是一些常用的手工设计特征方法和举例:
Haar特征:Haar特征是一种用于目标检测的特征,它通过计算图像中的灰度差异来识别目标物体。Haar特征被广泛应用于人脸检测算法中,如Viola-Jones人脸检测算法。
HOG特征:HOG特征是一种用于目标检测的特征,它通过计算图像中梯度方向的直方图来识别目标物体。HOG特征被广泛应用于行人检测算法中,如Dalal-Triggs行人检测算法。
SIFT特征:SIFT特征是一种用于目标检测的特征,它通过检测图像中的局部极值点,并提取其局部特征来识别目标物体。SIFT特征被广泛应用于物体识别算法中。
SURF特征:SURF特征是一种用于目标检测的特征,它通过检测图像中的兴趣点,并计算其尺度不变特征来识别目标物体。SURF特征被广泛应用于物体识别算法中。
LBP特征:LBP特征是一种用于目标检测的特征,它通过计算图像中局部二值模式的直方图来识别目标物体。LBP特征被广泛应用于人脸检测算法中。
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/legendarylin/article/details/129291430