数学与生活读书笔记

一篇关于数学与生活的读书笔记,通过数学家手术的故事揭示数学在日常生活中的重要性。文中提到数学不仅是智能的检验标准,还与逻辑学、语言学、语义网等多领域相关,强调在现代社会中,数学无处不在。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        有一位数学家接受手术。在开始手术前,外科医生让这位数学家闻麻醉药,并且叫他数1,2,3,···。这位数学家要是在平时,别说是1,2,3,···,就是极大或是极小的数也都能随心所欲地数出来,可是他却抵抗不住麻醉药,数1,2,还可以,数到 3 就不省人事了。一滴氯仿就把数学家带回到只能数到3的未开化人的状态去了。
        精神病医生为了试验病人的神智是否清楚,好像就是让病人数数的,据说从前在泰国的法庭上也是让证人数到10,如果数不上来,就没有资格作为一名证人。但如果根据这件事就想说“数学是智能的检验标准”的话,一定会有许多人瞪着眼反对。这是因为在这个世界上有许多人讨厌数字。
        与喜欢数学的柏拉图不一样,讨厌数学的苏格拉底说:“在数学家当中,没有人能够作认真的推论。”另外,还有很多人公然说数学这种东西是有害无益的。
        可是,喜欢、讨厌姑且不说,既然生活在现代,没有数这个东西就不能生活下去。

Denote: (逻辑学)指称
Linguistic:语言学
语义网
Semantic: 语义学,符号学

Number: 号码,数字
Numeral: 数词
Digit: 数字;位
Figure: 图形

Nombres Numeral, gato, almohadilla.
Símbolo
内容概要:本文档详细介绍了如何使用MATLAB实现粒子群优化算法(PSO)优化极限学习机(ELM)进行时间序列预测的项目实例。项目背景指出,PSO通过模拟鸟群觅食行为进行全局优化,ELM则以其快速训练和强泛化能力著称,但对初始参数敏感。结合两者,PSO-ELM模型能显著提升时间序列预测的准确性。项目目标包括提高预测精度、降低训练时间、处理复杂非线性问题、增强模型稳定性和鲁棒性,并推动智能化预测技术的发展。面对数据质量问题、参数优化困难、计算资源消耗、模型过拟合及非线性特征等挑战,项目采取了数据预处理、PSO优化、并行计算、交叉验证等解决方案。项目特点在于高效的优化策略、快速的训练过程、强大的非线性拟合能力和广泛的适用性。; 适合人群:对时间序列预测感兴趣的研究人员、数据科学家以及有一定编程基础并希望深入了解机器学习优化算法的工程师。; 使用场景及目标:①金融市场预测,如股票走势预测;②气象预报,提高天气预测的准确性;③交通流量预测,优化交通管理;④能源需求预测,确保能源供应稳定;⑤医疗健康预测,辅助公共卫生决策。; 其他说明:文档提供了详细的模型架构描述和MATLAB代码示例,涵盖数据预处理、PSO优化、ELM训练及模型评估等关键步骤,帮助读者全面理解和实践PSO-ELM模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值