瑞_数据结构与算法_B树

🙊前言:本文章为瑞_系列专栏之《数据结构与算法》的B树篇。由于博主是从B站黑马程序员的《数据结构与算法》学习到的相关知识,所以本系列专栏主要针对该课程进行笔记总结和拓展,文中的部分原理及图解也是来源于黑马提供的资料。本文仅供大家交流、学习及研究使用,禁止用于商业用途,违者必究!

相关知识链接:二叉树
相关知识链接:二叉搜索树
相关知识链接:AVL树
相关知识链接:红黑树
相关知识链接:B树

在这里插入图片描述

1 什么是B树

1.1 B树的背景

  B树(B-Tree)结构是一种高效存储和查询数据的方法,它的历史可以追溯到1970年代早期。B树的发明人Rudolf Bayer和Edward M. McCreight分别发表了一篇论文介绍了B树。这篇论文是1972年发表于《ACM Transactions on Database Systems》中的,题目为"Organization and Maintenance of Large Ordered Indexes"。

  这篇论文提出了一种能够高效地维护大型有序索引的方法,这种方法的主要思想是将每个节点扩展成多个子节点,以减少查找所需的次数。B树结构非常适合应用于磁盘等大型存储器的高效操作,被广泛应用于关系数据库和文件系统中。

  B树结构有很多变种和升级版,例如B+树,B*树和SB树等。这些变种和升级版本都基于B树的核心思想,通过调整B树的参数和结构,提高了B树在不同场景下的性能表现。

  总的来说,B树结构是一个非常重要的数据结构,为高效存储和查询大量数据提供了可靠的方法。它的历史可以追溯到上个世纪70年代,而且在今天仍然被广泛应用于各种场景。

  瑞:本系列介绍过的自平衡的树如AVL树红黑树的增删改查效率在内存中能达到对数级别,属于高效率的,但是并不适合做磁盘(IO)上的增删改查,而B树就比较适合,如MySQL底层是使用的B树结构升级版B+树。

  对树进行增删改查操作的效率主要取决于树的高度,树的高度越低,比较次数越少,反之亦然。如果是100W的数据,用AVL树存储,树的高度会达到20,因为log2(1000000)约等于20。最糟糕的情况下,要比较到叶子节点即20次才能找到数据,那在磁盘上要做20次读写,这是非常耗时的操作,导致效率低下。但是同样的100W数据,存储在B-树中(最小度数是500),树的高度约为3,平均效率有显著提升,所以在对于磁盘上的增删改查操作,B树更为受到欢迎。

  所以B树大个特点就是:树的高度能降到非常的低,具体见下文分析

1.2 B 的含义

  B-树的名称是由其发明者Rudolf Bayer提出的。Bayer和McCreight从未解释B代表什么,人们提出了许多可能的解释,比如Boeing、balanced、between、broad、bushy和Bayer等。但McCreight表示,越是思考B-trees中的B代表什么,就越能更好地理解B-trees

瑞:本文中出现的B-树和B树是同一个概念的不同称呼,并没有实质性的区别。通常,当我们提到B树时,可能会看到它被写作B-tree、B tree或者B_tree,这些都是指同一种数据结构。B树的变种如B+树和B*树,这些才是不同的概念。BTree又叫多路平衡搜索树。

1.3 B-树的度和阶


  • 度(degree):指树中节点孩子数
  • 阶(order):指所有节点孩子数最大值

在这里插入图片描述

  如上图:度:节点4、2都是有两个孩子,所以度数为2;节点1、3、5、7、9 10都是没有孩子,所以度数为0;节点6 8有3个孩子,所以度数为3。而阶是指上图中树的所有节点中孩子最多的那个值,就是节点6 8有3个孩子,所以上图中树的阶数为3。

1.4 B-树的特性


一颗m叉的BTree特性如下 :

  1. 树中每个节点最多包含 m 个孩子,其中 m 称为B-树的阶。
  2. 除根节点与叶子节点外,其它每个节点至少有 ceil(m/2) 个孩子。
  3. 若根节点不是叶子节点,则至少有两个孩子。
  4. 所有的叶子节点都在同一层。
  5. 每个非叶子节点由 n 个关键字 key 与 n+1 个指针组成,其中 ceil(m/2)-1 <= n <= m-1 。
  6. 关键字按非降序排列,即节点中的第 i 个关键字大于等于第 i-1 个关键字。
  7. 指针 P[ i ] 指向关键字值位于第 i 个关键字和第 i+1 哥关键字之间的子树。

瑞:
  根据第2条,中间节点的孩子数目是有下限的(阶数除以2,向上取整)。
  第5点中的n+1个指针就是n+1个孩子即孩子数目比该节点key的数目多1,如节点2有两个孩子(节点1、节点3)、节点6 8有3个孩子(节点5、节点7、节点9 10)
  最小度数要大于等于2(小于2意味着孩子只有一个,违反了B树的规则)B树中有最小度数的限制是为了保证B树的平衡特性
  最小度数 * 2 = 可能拥有的最多孩子的个数

  在B树中,每个节点都可以有多个子节点,这使得B树可以存储大量的键值,但也带来了一些问题。如果节点的子节点数量太少,那么就可能导致B树的高度过高,从而降低了B树的效率。此外,如果节点的子节点数量太多,那么就可能导致节点的搜索、插入和删除操作变得复杂和低效。
  最小度数的限制通过限制节点的子节点数量,来平衡这些问题。在B树中,每个节点的子节点数量都必须在一定的范围内,即t到2t之间(其中t为最小度数)

一棵 B-树具有以下性质:

  特性1️⃣:每个节点 x 具有

    1️⃣➖1️⃣ 属性 n,表示节点 x 中 key 的个数
    1️⃣➖2️⃣ 属性 leaf,表示节点是否是叶子节点
    1️⃣➖3️⃣ 节点 key 可以有多个,以升序存储


  特性2️⃣:每个非叶子节点中的孩子数是 n + 1、叶子节点没有孩子


  特性3️⃣:最小度数t(节点的孩子数称为度)和节点中键数量的关系如下:

Column 1Column 2
最小度数t键数量范围
21 ~ 3
32 ~ 5
43 ~ 7
n(n-1) ~ (2n-1)

  其中,当节点中键数量达到其最大值时,即 3、5、7 … 2n-1,需要分裂


  特性4️⃣:叶子节点的深度都相同

瑞:即所有的叶子节点都在同一层

  B-树与 2-3 树、2-3-4 树的关系

  它们之间的关系:

  1. 2-3树是最小度数为2的B树,其中每个节点可以包含2个或3个子节点。
  2. 2-3-4树是最小度数为2的B树的一种特殊情况,其中每个节点可以包含2个、3个或4个子节点。
  3. B树是一种更加一般化的平衡树,可以适应不同的应用场景,其节点可以包含任意数量的键值,节点的度数取决于最小度数t的设定。

1.5 B-树演变过程示例

  以5叉BTree为例(度为5)为例,演示B树的演变过程

  key的数量:可以根据公式推导ceil(m/2)-1<=n<=m-1。因为m为5,所以得2<=n<=4,即当n>4时,中间节点分裂到父节点,两边节点分裂

  BTree可视化网站,点击进入https://www.cs.usfca.edu/~galles/visualization/BTree.html

  瑞:该网站是一个旧金山大学计算机科学系的可视化项目网站,专门用于展示和解释B树(B-tree)数据结构及其操作的可视化模型。

  下面就通过使用该网站对插入CNGAHEKQMFWLTZDPRXYS数据进行演示

  演变过程如下:

  进入网页后,选择Max. Degree = 5选项。本例模拟的是度数为5的情况下插入CNGAHEKQMFWLTZDPRXYS数据,后续网址和下半部分的配置不会再进行截取(均不会更改)

在这里插入图片描述
  1️⃣ 依次插入前4个字母CNGA后,B树演变为下图,此时B树为 4 个关键字 key(ACGN) 与 n+1 = 5 个指针组成

在这里插入图片描述
  2️⃣ 插入H,此时 n>4,中间元素G字母向上分裂到新的节点,分裂动图如下所示(后续分裂均是同理,过程可以到网站内自己感受,后续不再放置动图)

在这里插入图片描述
  此时B树各个key和指针的关系如下图所示(每一个节点指针比key的数量多1,后续不再展示带指针图)

在这里插入图片描述

  3️⃣ 插入E、K、Q不需要分裂

在这里插入图片描述

  4️⃣ 插入M,中间元素M字母向上分裂到父节点G

在这里插入图片描述

  5️⃣ 插入F、W、L、T不需要分裂

在这里插入图片描述

  6️⃣ 插入Z,中间元素T向上分裂到父节点中

在这里插入图片描述

  7️⃣ 插入D,中间元素D向上分裂到父节点中,然后插入P、R、X、Y不需要分裂

在这里插入图片描述

  8️⃣ 最后插入S,NPQR节点n>5,中间节点Q向上分裂,但分裂后父节点DGMT的n>5,中间节点M向上分裂

在这里插入图片描述

在这里插入图片描述

  最终如下B树演化结果如下:

在这里插入图片描述




2 B-树的Java实现


1️⃣➖1️⃣ 内部节点类Node中含有属性:

  • 关键字
  • 孩子们
  • 有效关键字个数
  • 是否是叶子节点
  • 最小度数 (最小孩子数)

瑞:由于本例关键字使用基本数组 int[] 存储,所以需要有效关键字个数属性对关键字个数进行记录,如果关键字使用集合(如List)则可以通过 size 方法获取到有效关键字个数

1️⃣➖2️⃣ 内部节点类Node中含有方法:

  • 多路查找get(int key)
  • 向指定索引处插入key,insertKey(int key, int index)
  • 向指定索引处插入child,insertChild(Node child, int index)

1️⃣➖3️⃣ 内部节点类Node中含有内部工具方法:

  • 移除指定index处的关键字removeKey(int index)
  • 移除最左边的关键字removeLeftmostKey()
  • 移除最右边的关键字removeRightmostKey()
  • 移除指定index处的孩子removeChild(int index)
  • 移除最左边的孩子removeLeftmostChild()
  • 移除最右边的孩子removeRightmostChild()
  • 获取index孩子处左边的兄弟childLeftSibling(int index)
  • 获取index孩子处右边的兄弟childRightSibling(int index)
  • 复制当前节点的所有key和child到目标节点moveToTarget(Node target)

2️⃣➖1️⃣ B数类BTree中含有属性:

  • 根节点(Node)
  • 树中节点最小度数
  • 最小key数目
  • 最大key数目

2️⃣➖2️⃣ B数类BTree中含有方法:

  • 是否存在某索引contains(int key)
  • 新增put(int key)
  • 分裂split(Node left, Node parent, int index)
  • 删除remove(int key)
  • 平衡balance(Node parent, Node x, int i)

2.1 B树节点类Node

  实际 keys 应当改为 entries 以便同时保存 keyvalue,本文主要是为了学习B树的思想,所以做简化实现

    static class Node {
        /**
         * 关键字
         */ 
        int[] keys;
        /**
         * 孩子们
         */
        Node[] children;
        /**
         * 有效关键字个数(keys 中有效 key 数目)
         */
        int keyNumber;
        /**
         * 是否是叶子节点
         */
        boolean leaf = true;
        /**
         * 最小度数 (最小孩子数),它决定了节点中key 的最小、最大数目,分别是 t-1 和 2t-1
         */
        int t;

        /**
         * 构造方法(给最小度数赋值
         *
         * @param t 最小度数(t>=2)
         */
        public Node(int t) {
            this.t = t;
            // 最小度数*2就是最多孩子数
            this.children = new Node[2 * t];
            this.keys = new int[2 * t - 1];
        }

        public Node(int[] keys) {
            this.keys = keys;
        }

        /**
         * 打印有效Key,为了方便调试和测试,非必须
         */
        @Override
        public String toString() {
            return Arrays.toString(Arrays.copyOfRange(keys, 0, keyNumber));
        }
        
        // 多路查找
        Node get(int key) {
            int i = 0;
            while (i < keyNumber) {
                if (keys[i] == key) {
                    return this;
                }
                if (keys[i] > key) {
                    break;
                }
                i++;
            }
            // 执行到此时 keys[i]>key 或 i== keyNumber
            if (leaf) {
                return null;
            }
            // 非叶子情况
            return children[i].get(key);
        }

        // 向 keys 指定索引处插入 key
        void insertKey(int key, int index) {
            System.arraycopy(keys, index, keys, index + 1, keyNumber - index);
            keys[index] = key;
            keyNumber++;
        }

        // 向 children 指定索引处插入 child
        void insertChild(Node child, int index) {
            System.arraycopy(children, index, children, index + 1, keyNumber - index);
            children[index] = child;
        }
  }
2.1.1 实现多路查找方法get(int key)
        // 多路查找
        Node get(int key) {
            int i = 0;
            while (i < keyNumber) {
                if (keys[i] == key) {
                    return this;
                }
                if (keys[i] > key) {
                    break;
                }
                i++;
            }
            // 执行到此时 keys[i]>key 或 i== keyNumber
            if (leaf) {
                return null;
            }
            // 非叶子情况
            return children[i].get(key);
        }
2.1.2 实现插入key方法insertKey(int key, int index)
        // 向 keys 指定索引处插入 key
        void insertKey(int key, int index) {
            System.arraycopy(keys, index, keys, index + 1, keyNumber - index);
            keys[index] = key;
            keyNumber++;
        }
2.1.3 实现插入child方法insertChild(Node child, int index)
        // 向 children 指定索引处插入 child
        void insertChild(Node child, int index) {
            System.arraycopy(children, index, children, index + 1, keyNumber - index);
            children[index] = child;
        }

  insertKeyinsertChild方法的作用是向 keys 数组或 children 数组指定 index 处插入新数据

注意:

  • 由于使用了静态数组,并且不会在新增或删除时改变它的大小,因此需要额外的 keyNumber 来指定数组内有效 key 的数目
    • 插入时 keyNumber++
    • 删除时减少 keyNumber 的值即可
  • children 不会单独维护数目,它比 keys 多一个
  • 如果这两个方法同时调用,注意它们的先后顺序,insertChild 后调用,因为它计算复制元素个数时用到了 keyNumber
2.1.4 实现节点类内部工具方法
		// 移除指定 index 处的 key
        int removeKey(int index) {
            int t = keys[index];
            System.arraycopy(keys, index + 1, keys, index, --keyNumber - index);
            return t;
        }

        // 移除最左边的 key
        int removeLeftmostKey() {
            return removeKey(0);
        }

        // 移除最右边的 key
        int removeRightmostKey() {
            return removeKey(keyNumber - 1);
        }

        // 移除指定 index 处的 child
        Node removeChild(int index) {
            Node t = children[index];
            System.arraycopy(children, index + 1, children, index, keyNumber - index);
            children[keyNumber] = null; // help GC
            return t;
        }

        // 移除最左边的 child
        Node removeLeftmostChild() {
            return removeChild(0);
        }

        // 移除最右边的 child
        Node removeRightmostChild() {
            return removeChild(keyNumber);
        }

        // index 孩子处左边的兄弟
        Node childLeftSibling(int index) {
            return index > 0 ? children[index - 1] : null;
        }

        // index 孩子处右边的兄弟
        Node childRightSibling(int index) {
            return index == keyNumber ? null : children[index + 1];
        }

        // 复制当前节点的所有 key 和 child 到 target
        void moveToTarget(Node target) {
            int start = target.keyNumber;
            if (!leaf) {
                for (int i = 0; i <= keyNumber; i++) {
                    target.children[start + i] = children[i];
                }
            }
            for (int i = 0; i < keyNumber; i++) {
                target.keys[target.keyNumber++] = keys[i];
            }
        }

2.2 B树类BTree

定义树⬇️

public class BTree {
    final int t; // 树中节点最小度数
    final int MIN_KEY_NUMBER; // 最小key数目
    final int MAX_KEY_NUMBER; // 最大key数目
    Node root; // 根节点

    public BTree() {
        this(2);
    }

    public BTree(int t) {
        this.t = t;
        MIN_KEY_NUMBER = t - 1;
        MAX_KEY_NUMBER = 2 * t - 1;
        root = new Node(t);
    }
}
2.2.1 实现是否存在某索引方法contains(int key)
    // 1. 是否存在
    public boolean contains(int key) {
        return root.get(key) != null;
    }
2.2.2 实现新增方法put(int key)

  思路:

  • 首先查找本节点中的插入位置 i,如果没有空位(key 被找到),应该走更新的逻辑,目前什么没做
  • 接下来分两种情况
    • 如果节点是叶子节点,可以直接插入了
    • 如果节点是非叶子节点,需要继续在 children[i] 处继续递归插入
  • 无论哪种情况,插入完成后都可能超过节点 keys 数目限制,此时应当执行节点分裂
    • 参数中的 parent 和 index 都是给分裂方法用的,代表当前节点父节点,和分裂节点是第几个孩子

  判断依据为:

boolean isFull(Node node) {
    return node.keyNumber == MAX_KEY_NUMBER;
}

  代码实现:

    // 2. 新增
    public void put(int key) {
        doPut(root, key, null, 0);
    }

    private void doPut(Node node, int key, Node parent, int index) {
        int i = 0;
        while (i < node.keyNumber) {
            if (node.keys[i] == key) {
                return; // 更新
            }
            if (node.keys[i] > key) {
                break; // 找到了插入位置,即为此时的 i
            }
            i++;
        }
        if (node.leaf) {
            node.insertKey(key, i);
        } else {
            doPut(node.children[i], key, node, i);
        }
        if (node.keyNumber == MAX_KEY_NUMBER) {
            split(node, parent, index);
        }
    }
2.2.3 实现分裂方法split(Node left, Node parent, int index)

  分两种情况:

  • 如果 parent == null 表示要分裂的是根节点,此时需要创建新根,原来的根节点作为新根的 0 孩子
  • 否则
    • 创建 right 节点(分裂后大于当前 left 节点的),把 t 以后的 key 和 child 都拷贝过去
    • t-1 处的 key 插入到 parent 的 index 处,index 指 left 作为孩子时的索引
    • right 节点作为 parent 的孩子插入到 index + 1 处
    /**
     * <h3>分裂方法</h3>
     *
     * @param left   要分裂的节点
     * @param parent 分裂节点的父节点
     * @param index  分裂节点是第几个孩子
     */
    void split(Node left, Node parent, int index) {
        // 分裂的是根节点
        if (parent == null) {
            Node newRoot = new Node(t);
            newRoot.leaf = false;
            newRoot.insertChild(left, 0); // @TODO keyNumber 的维护(新节点没有孩子,应该不会有问题)
            this.root = newRoot;
            parent = newRoot;
        }
        // 1. 创建 right 节点,把 left 中 t 之后的 key 和 child 移动过去
        Node right = new Node(t);
        right.leaf = left.leaf;
        System.arraycopy(left.keys, t, right.keys, 0, t - 1);
        // 分裂节点是非叶子的情况
        if (!left.leaf) {
            System.arraycopy(left.children, t, right.children, 0, t);
            for (int i = t; i <= left.keyNumber; i++) {
                left.children[i] = null;
            }
        }
        right.keyNumber = t - 1;
        left.keyNumber = t - 1;
        // 2. 中间的 key (t-1 处)插入到父节点
        int mid = left.keys[t - 1];
        parent.insertKey(mid, index);
        // 3. right 节点作为父节点的孩子
        parent.insertChild(right, index + 1);
    }
2.2.4 实现删除方法remove(int key)

  注意本删除方法是删除B树中某个节点的某个key,不是把整个节点删了

  主要分为以下情况:

  case 1:当前节点是叶子节点,没找到,直接返回

  case 2:当前节点是叶子节点,找到,因为是叶子节点,所以直接删

  case 3:当前节点是非叶子节点,没找到,要继续到孩子节点查找

  case 4:当前节点是非叶子节点,找到,再接着找到其后继key,替换被删除节点,然后删除后继key

  case 5:删除后 key 数目 < 下限 [ t - 1 ](不平衡),进行平衡性调整(具体见 2.2.4

  case 6:根节点

// 3. 删除
    public void remove(int key) {
        doRemove(null, root, 0, key);
    }

    private void doRemove(Node parent, Node node, int index, int key) {
        int i = 0;
        while (i < node.keyNumber) {
            if (node.keys[i] >= key) {
                break;
            }
            i++;
        }
        // i 找到:代表待删除 key 的索引
        // i 没找到: 代表到第i个孩子继续查找
        if (node.leaf) {
            if (!found(node, key, i)) { // case1
                return;
            } else { // case2
                node.removeKey(i);
            }
        } else {
            if (!found(node, key, i)) { // case3
                doRemove(node, node.children[i], i, key);
            } else { // case4
                // 1. 找到后继 key
                Node s = node.children[i + 1];
                while (!s.leaf) {
                    s = s.children[0];
                }
                int skey = s.keys[0];
                // 2. 替换待删除 key
                node.keys[i] = skey;
                // 3. 删除后继 key
                doRemove(node, node.children[i + 1], i + 1, skey);
            }
        }
        if (node.keyNumber < MIN_KEY_NUMBER) {
            // 调整平衡 case 5 case 6
            balance(parent, node, index);
        }
    }

2.2.4 实现平衡方法balance(Node parent, Node x, int i)

  删除后平衡主要分为以下情况:

  case 5-1:左边富裕,右旋

  case 5-2:右边富裕,左旋

  case 5-3:两边都不够借,向左合并

2.2.4.1 右旋

  一颗平衡的B树,如下

		    4
		 /     \
	  1,2,3     5,6

  删除key 5后变为

		    4
		 /     \
	  1,2,3     6

  此时节点6的key的数目小于下限,为了让节点6平衡,需要对key的数目+1,此时左边兄弟的节点富裕,所以可以通过右旋保持平衡

  1️⃣ 先把父节点4旋转下去,如下

		    4
		 /     \
	  1,2,3     4,6

  2️⃣ 再把左边兄弟节点的3旋转上去,B树恢复平衡,如下

		    3
		 /     \
	  1,2      4,6
2.2.4.2 左旋

  一颗平衡的B树,如下

		    3
		 /     \
	  1,2      4,5,6

  删除key 1后变为

		    3
		 /     \
	   2       4,5,6

  此时节点2的key的数目小于下限,为了让节点2平衡,需要对key的数目+1,此时右边兄弟的节点富裕,所以可以通过左旋保持平衡

  1️⃣ 先把父节点3旋转下去,如下

		    3
		 /     \
	   2,3      4,5,6

  2️⃣ 再把右边兄弟节点的4旋转上去,B树恢复平衡,如下

		    4
		 /     \
	   2,3      5,6
2.2.4.3 合并

  一颗平衡的B树,如下

		    3
		 /     \
	   1,2      4,5

  删除key 4后变为

		    3
		 /     \
	   1,2       5

  此时节点5的key的数目小于下限,为了让节点5平衡,需要对key的数目+1。但此时左边或右边的兄弟节点并不富裕,不能通过旋转的方式重新平衡,所以这类情况要使用合并(向左合并)

  1️⃣ 先把父节点3合并到最右边,如下

		   null
		 /      \
	   1,2,3      5

  2️⃣ 再把右边的兄弟节点元素合并到最右边,如下

		   null
		 /      
	   1,2,3,5

  3️⃣ 最后把0号孩子替换根节点,如下

	   1,2,3,5
2.2.4.4 代码实现
// 平衡
    private void balance(Node parent, Node x, int i) {
        // case 6 根节点
        if (x == root) {
            if (root.keyNumber == 0 && root.children[0] != null) {
                root = root.children[0];
            }
            return;
        }
        Node left = parent.childLeftSibling(i);
        Node right = parent.childRightSibling(i);
        // case 5-1 左边富裕,右旋
        if (left != null && left.keyNumber > MIN_KEY_NUMBER) {
            // a) 父节点中前驱key旋转下来
            x.insertKey(parent.keys[i - 1], 0);
            if (!left.leaf) {
                // b) left中最大的孩子换爹
                x.insertChild(left.removeRightmostChild(), 0);
            }
            // c) left中最大的key旋转上去
            parent.keys[i - 1] = left.removeRightmostKey();
            return;
        }
        // case 5-2 右边富裕,左旋
        if (right != null && right.keyNumber > MIN_KEY_NUMBER) {
            // a) 父节点中后继key旋转下来
            x.insertKey(parent.keys[i], x.keyNumber);
            // b) right中最小的孩子换爹
            if (!right.leaf) {
                x.insertChild(right.removeLeftmostChild(), x.keyNumber); 
            }
            // c) right中最小的key旋转上去
            parent.keys[i] = right.removeLeftmostKey();
            return;
        }
        // case 5-3 两边都不够借,向左合并
        if (left != null) {
            // 向左兄弟合并
            parent.removeChild(i);
            left.insertKey(parent.removeKey(i - 1), left.keyNumber);
            x.moveToTarget(left);
        } else {
            // 向自己合并
            parent.removeChild(i + 1);
            x.insertKey(parent.removeKey(i), x.keyNumber);
            right.moveToTarget(x);
        }
    }



3 B树Java实现代码完整版(复制粘贴用)


import java.util.Arrays;

/**
 * <h3>B-树</h3>
 */
@SuppressWarnings("all")
public class BTree {

    static class Node {
        /**
         * 关键字
         */
        int[] keys;
        /**
         * 孩子们
         */
        Node[] children;
        /**
         * 有效关键字个数(keys 中有效 key 数目)
         */
        int keyNumber;
        /**
         * 是否是叶子节点
         */
        boolean leaf = true;
        /**
         * 最小度数 (最小孩子数),它决定了节点中key 的最小、最大数目,分别是 t-1 和 2t-1
         */
        int t;

        /**
         * 构造方法(给最小度数赋值
         *
         * @param t 最小度数(t>=2)
         */
        public Node(int t) {
            this.t = t;
            // 最小度数*2就是最多孩子数
            this.children = new Node[2 * t];
            this.keys = new int[2 * t - 1];
        }


        public Node(int[] keys) {
            this.keys = keys;
        }

        /**
         * 打印有效Key,为了方便调试和测试,非必须
         */
        @Override
        public String toString() {
            return Arrays.toString(Arrays.copyOfRange(keys, 0, keyNumber));
        }

        // 多路查找
        Node get(int key) {
            int i = 0;
            while (i < keyNumber) {
                if (keys[i] == key) {
                    return this;
                }
                if (keys[i] > key) {
                    break;
                }
                i++;
            }
            // 执行到此时 keys[i]>key 或 i== keyNumber
            if (leaf) {
                return null;
            }
            // 非叶子情况
            return children[i].get(key);
        }

        // 向 keys 指定索引处插入 key
        void insertKey(int key, int index) {
            System.arraycopy(keys, index, keys, index + 1, keyNumber - index);
            keys[index] = key;
            keyNumber++;
        }

        // 向 children 指定索引处插入 child
        void insertChild(Node child, int index) {
            System.arraycopy(children, index, children, index + 1, keyNumber - index);
            children[index] = child;
        }

        // 移除指定 index 处的 key
        int removeKey(int index) {
            int t = keys[index];
            System.arraycopy(keys, index + 1, keys, index, --keyNumber - index);
            return t;
        }

        // 移除最左边的 key
        int removeLeftmostKey() {
            return removeKey(0);
        }

        // 移除最右边的 key
        int removeRightmostKey() {
            return removeKey(keyNumber - 1);
        }

        // 移除指定 index 处的 child
        Node removeChild(int index) {
            Node t = children[index];
            System.arraycopy(children, index + 1, children, index, keyNumber - index);
            children[keyNumber] = null; // help GC
            return t;
        }

        // 移除最左边的 child
        Node removeLeftmostChild() {
            return removeChild(0);
        }

        // 移除最右边的 child
        Node removeRightmostChild() {
            return removeChild(keyNumber);
        }

        // index 孩子处左边的兄弟
        Node childLeftSibling(int index) {
            return index > 0 ? children[index - 1] : null;
        }

        // index 孩子处右边的兄弟
        Node childRightSibling(int index) {
            return index == keyNumber ? null : children[index + 1];
        }

        // 复制当前节点的所有 key 和 child 到 target
        void moveToTarget(Node target) {
            int start = target.keyNumber;
            if (!leaf) {
                for (int i = 0; i <= keyNumber; i++) {
                    target.children[start + i] = children[i];
                }
            }
            for (int i = 0; i < keyNumber; i++) {
                target.keys[target.keyNumber++] = keys[i];
            }
        }
    }


    final int t; // 树中节点最小度数
    final int MIN_KEY_NUMBER; // 最小key数目
    final int MAX_KEY_NUMBER; // 最大key数目
    Node root; // 根节点


    public BTree() {
        // 最小度数默认是2
        this(2);
    }

    public BTree(int t) {
        this.t = t;
        root = new Node(t);
        MAX_KEY_NUMBER = 2 * t - 1;
        MIN_KEY_NUMBER = t - 1;
    }

    // 1. 是否存在
    public boolean contains(int key) {
        return root.get(key) != null;
    }

    // 2. 新增
    public void put(int key) {
        doPut(root, key, null, 0);
    }

    private void doPut(Node node, int key, Node parent, int index) {
        int i = 0;
        while (i < node.keyNumber) {
            if (node.keys[i] == key) {
                return; // 更新
            }
            if (node.keys[i] > key) {
                break; // 找到了插入位置,即为此时的 i
            }
            i++;
        }
        if (node.leaf) {
            node.insertKey(key, i);
        } else {
            doPut(node.children[i], key, node, i);
        }
        if (node.keyNumber == MAX_KEY_NUMBER) {
            split(node, parent, index);
        }
    }

    /**
     * <h3>分裂方法</h3>
     *
     * @param left   要分裂的节点
     * @param parent 分裂节点的父节点
     * @param index  分裂节点是第几个孩子
     */
    void split(Node left, Node parent, int index) {
        // 分裂的是根节点
        if (parent == null) {
            Node newRoot = new Node(t);
            newRoot.leaf = false;
            newRoot.insertChild(left, 0); // @TODO keyNumber 的维护(新节点没有孩子,应该不会有问题)
            this.root = newRoot;
            parent = newRoot;
        }
        // 1. 创建 right 节点,把 left 中 t 之后的 key 和 child 移动过去
        Node right = new Node(t);
        right.leaf = left.leaf;
        System.arraycopy(left.keys, t, right.keys, 0, t - 1);
        // 分裂节点是非叶子的情况
        if (!left.leaf) {
            System.arraycopy(left.children, t, right.children, 0, t);
            for (int i = t; i <= left.keyNumber; i++) {
                left.children[i] = null;
            }
        }
        right.keyNumber = t - 1;
        left.keyNumber = t - 1;
        // 2. 中间的 key (t-1 处)插入到父节点
        int mid = left.keys[t - 1];
        parent.insertKey(mid, index);
        // 3. right 节点作为父节点的孩子
        parent.insertChild(right, index + 1);
    }

    // 3. 删除
    public void remove(int key) {
        doRemove(null, root, 0, key);
    }

    private void doRemove(Node parent, Node node, int index, int key) {
        int i = 0;
        while (i < node.keyNumber) {
            if (node.keys[i] >= key) {
                break;
            }
            i++;
        }
        // i 找到:代表待删除 key 的索引
        // i 没找到: 代表到第i个孩子继续查找
        if (node.leaf) {
            if (!found(node, key, i)) { // case1
                return;
            } else { // case2
                node.removeKey(i);
            }
        } else {
            if (!found(node, key, i)) { // case3
                doRemove(node, node.children[i], i, key);
            } else { // case4
                // 1. 找到后继 key
                Node s = node.children[i + 1];
                while (!s.leaf) {
                    s = s.children[0];
                }
                int skey = s.keys[0];
                // 2. 替换待删除 key
                node.keys[i] = skey;
                // 3. 删除后继 key
                doRemove(node, node.children[i + 1], i + 1, skey);
            }
        }
        if (node.keyNumber < MIN_KEY_NUMBER) {
            // 调整平衡 case 5 case 6
            balance(parent, node, index);
        }
    }

    // 平衡
    private void balance(Node parent, Node x, int i) {
        // case 6 根节点
        if (x == root) {
            if (root.keyNumber == 0 && root.children[0] != null) {
                root = root.children[0];
            }
            return;
        }
        Node left = parent.childLeftSibling(i);
        Node right = parent.childRightSibling(i);
        // case 5-1 左边富裕,右旋
        if (left != null && left.keyNumber > MIN_KEY_NUMBER) {
            // a) 父节点中前驱key旋转下来
            x.insertKey(parent.keys[i - 1], 0);
            if (!left.leaf) {
                // b) left中最大的孩子换爹
                x.insertChild(left.removeRightmostChild(), 0);
            }
            // c) left中最大的key旋转上去
            parent.keys[i - 1] = left.removeRightmostKey();
            return;
        }
        // case 5-2 右边富裕,左旋
        if (right != null && right.keyNumber > MIN_KEY_NUMBER) {
            // a) 父节点中后继key旋转下来
            x.insertKey(parent.keys[i], x.keyNumber);
            // b) right中最小的孩子换爹
            if (!right.leaf) {
                x.insertChild(right.removeLeftmostChild(), x.keyNumber);
            }
            // c) right中最小的key旋转上去
            parent.keys[i] = right.removeLeftmostKey();
            return;
        }
        // case 5-3 两边都不够借,向左合并
        if (left != null) {
            // 向左兄弟合并
            parent.removeChild(i);
            left.insertKey(parent.removeKey(i - 1), left.keyNumber);
            x.moveToTarget(left);
        } else {
            // 向自己合并
            parent.removeChild(i + 1);
            x.insertKey(parent.removeKey(i), x.keyNumber);
            right.moveToTarget(x);
        }
    }

    private boolean found(Node node, int key, int i) {
        return i < node.keyNumber && node.keys[i] == key;
    }

    // 遍历树结构并打印节点的键值
    public void travel() {
        doTravel(root);
    }

    public void doTravel(Node node) {
        if (node == null) {
            return;
        }
        int i = 0;
        for (; i < node.keyNumber; i++) {
            doTravel(node.children[i]);
            System.out.println(node.keys[i]);
        }
        doTravel(node.children[i]);
    }
}




本文是博主的粗浅理解,可能存在一些错误或不完善之处,如有遗漏或错误欢迎各位补充,谢谢

  如果觉得这篇文章对您有所帮助的话,请动动小手点波关注💗,你的点赞👍收藏⭐️转发🔗评论📝都是对博主最好的支持~


  • 27
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瑞486

你的点赞评论收藏才更是动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值