1.绝对误差与绝对误差界
设x为精确值,x*为一个近似值,则e=|x-x*|为近似值x的绝对误差或者误差。
如果精确值x与近似值x*误差的绝对值不超过某个正数,即
,
ε为误差限或绝对误差限。
精确值x*也可以表示为x*=x+(-)e.
2.相对误差与相对误差界
设x为精确值,x*为一个近似值,则e=|x-x*|为近似值x的绝对误差或者误差。
如果精确值x与近似值x*误差的绝对值不超过某个正数,即|e|=|x-x*|ε,ε为误差限或绝对误差限。
3.产生误差的因素
(1)原始误差:由客观存在的模型抽象到物理模型产生的误差,包括模型误差和原始数据误差。
(2)截断误差:用有限项截取无限项时,由截取函数的部分项产生的误差,比如
,在计算中用
,
那么截断误差为
(3)舍入误差:在数值计算中,通常都按有限位进行计算,比如按照四舍五入进行舍入而产生的误差。
4.有效位数
当x的误差线为某一位的半个单位,则这一位到第一个非零位的位数称为x的有效位数。
这里的半个单位举个例子:
,写成这种格式。
有效数字与绝对误差、相对误差有以下联系:
1.若某数x的近似值x*有n位有效数字,则此近似值x*的绝对误差限为
由此可见,当m一定时,有效数字位数n越多,其绝对误差限越小。
2.近似值x*具有n位有效数字,则其相对误差限
,反之,若x*的相对误差限满足
,则x*至少有n位有效数字。
5.选用和设计算法时应遵循的原则
1.选用数值稳定的计算公式,控制舍入误差的传播
2.尽量简化计算步骤,以减少计算次数
3.尽量避免两个相近的数相减
4.绝对值太小的数不宜做除数
5.合理安排运算顺序防止大数吃掉小数
6.第一的习题与解析
(字有点丑,若有错误欢迎指正)