误差与有效数字

本文探讨了绝对误差与绝对误差界,相对误差及其界的概念,分析了产生误差的多种因素,如原始误差、截断误差和舍入误差,并强调了在选用和设计算法时应考虑的有效位数和数值稳定性原则。还提供了习题与解析作为实践应用示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.绝对误差与绝对误差界

设x为精确值,x*为一个近似值,则e=|x-x*|为近似值x的绝对误差或者误差。

如果精确值x与近似值x*误差的绝对值不超过某个正数,即

,

ε为误差限或绝对误差限。

精确值x*也可以表示为x*=x+(-)e.

2.相对误差与相对误差界

设x为精确值,x*为一个近似值,则e=|x-x*|为近似值x的绝对误差或者误差。

如果精确值x与近似值x*误差的绝对值不超过某个正数,即|e|=|x-x*|\leqslantε,ε为误差限或绝对误差限。

3.产生误差的因素

(1)原始误差:由客观存在的模型抽象到物理模型产生的误差,包括模型误差和原始数据误差。

(2)截断误差:用有限项截取无限项时,由截取函数的部分项产生的误差,比如

,在计算中用

那么截断误差为

(3)舍入误差:在数值计算中,通常都按有限位进行计算,比如按照四舍五入进行舍入而产生的误差。

4.有效位数

当x的误差线为某一位的半个单位,则这一位到第一个非零位的位数称为x的有效位数。

这里的半个单位举个例子:

,写成这种格式。

有效数字与绝对误差、相对误差有以下联系:

1.若某数x的近似值x*有n位有效数字,则此近似值x*的绝对误差限为

由此可见,当m一定时,有效数字位数n越多,其绝对误差限越小。

2.近似值x*具有n位有效数字,则其相对误差限

,反之,若x*的相对误差限满足,则x*至少有n位有效数字。

5.选用和设计算法时应遵循的原则

1.选用数值稳定的计算公式,控制舍入误差的传播

2.尽量简化计算步骤,以减少计算次数

3.尽量避免两个相近的数相减

4.绝对值太小的数不宜做除数

5.合理安排运算顺序防止大数吃掉小数

6.第一的习题与解析

(字有点丑,若有错误欢迎指正)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值