有效数字 | 相对误差与有效数位

有效数字

数学上用“四舍五入”的法则将一个位数很多的数表示成一定位数的数。如果一个近似数的误差限是它某一位的半个单位,则称它准确到这一位(即该位数字是准确的、有效的和可靠的)。并且,从该位起直到前面第一个非零数字为止的所有数字都称为有效数字,即有:

定义1:设 x ∗ x^* x是一个准确数,x是它的近似数,若
∣ x ∗ − x ∣ < 1 / 2 × 1 0 − n |x^*-x|<1/2\times 10^{-n} xx<1/2×10n
就是说,用x近似表示 x ∗ x^* x时准确到小数点之后第n位(精确度),并把从该位起到x的第一位非零数字之间的一切数字都叫做有效数字,并把有效数字的位数叫做有效数位。

例如:若将数x用规格化形式表示,则有
x = ± 0 ⋅ a 1 a 2 a 3 ⋯ a s ⋯ a k × 1 0 m ( a 1 ≠ 0 ) x=\pm 0·a_1a_2a_3\cdots a_s\cdots a_k\times 10^m \quad (a_1\neq 0) x=±0a1a2a3asak×10m(a1=0)
其中,s为有效数字的位数,m为阶数。m的确定方法如下:

∣ x ∣ ≥ 1 |x|\geq 1 x1时,则m=整数部分的位数;

0.1 ≤ ∣ x ∣ < 1 0.1 \leq |x|<1 0.1x<1时,则 m = 0 m=0 m=0;

∣ x ∣ < 0.1 |x|<0.1 x<0.1时,则 m = − m=- m=(小数点后零的个数)


∣ x − x ∗ ∣ < 1 2 × 1 0 − n = 1 2 × 1 0 − ( s − m ) = 1 2 × 1 0 m − s , 1 ≤ s ≤ k (1) |x-x^*|<\frac{1}{2}\times 10^{-n} = \frac{1}{2}\times 10^{-(s-m)}=\frac{1}{2}\times 10^{m-s}, \quad 1\leq s\leq k \tag{1} xx<21×10n=21×10(sm)=21×10ms,1sk(1)
则x的有效数位为:
s = n + m (2) s=n+m \tag{2} s=n+m(2)
应用公式(1)和(2)可以判断一个数的某一位数字是否为有效数字,从而可确定该数的有效数位。

例1

对于数 0.08698 , n = 5 , m = − 1 , s = n + m = 4 0.08698,n=5,m=-1,s=n+m=4 0.08698,n=5,m=1,s=n+m=4

对于数 0.8698 , n = 4 , m = 0 , s = n + m = 4 0.8698,n=4,m=0,s=n+m=4 0.8698,n=4,m=0,s=n+m=4

对于数 869.8 , n = 1 , m = 3 , s = n + m = 4 869.8,n=1,m=3,s=n+m=4 869.8,n=1,m=3,s=n+m=4

对于数 8698 , n = 0 , m = 4 , s = n + m = 4 8698,n=0,m=4,s=n+m=4 8698,n=0,m=4,s=n+m=4

一个数精确到小数点后n位,并不表明它一定有n位有效数字。应注意有效数位s的计算。

例2:对于圆周率 π = 3.1415926 ⋯ \pi=3.1415926\cdots π=3.1415926,用四舍五入取小数点后4位时,近似值为 3.1416 3.1416 3.1416,此时
∣ π − 3.1416 ∣ ≤ 1 2 × 1 0 − 4 |\pi-3.1416|\leq \frac{1}{2}\times 10^{-4} π3.141621×104
即有 m = 1 , n = 4 m=1,n=4 m=1,n=4,所以有效数位为 s = n + m = 5 s=n+m=5 s=n+m=5,绝对误差限为 1 2 × 1 0 − 4 \frac{1}{2}\times 10^{-4} 21×104

如果取 π = 3.14 \pi=3.14 π=3.14,则 m = 1 , n = 2 m=1,n=2 m=1,n=2,有效数位为 s = n + m = 3 s=n+m=3 s=n+m=3,其绝对误差限为 1 2 × 1 0 − 2 \frac{1}{2}\times 10^{-2} 21×102

例3:设 x ∗ = 8.000033 x^*=8.000033 x=8.000033,若取 x = 8.0000 x=8.0000 x=8.0000,则
∣ x − x ∗ ∣ = 0.000033 = 0.33 × 1 0 − 4 < 1 2 × 1 0 − 4 = 1 2 × 1 0 1 − 5 |x-x^*|=0.000033=0.33\times 10^{-4}<\frac{1}{2}\times 10^{-4}=\frac{1}{2}\times 10^{1-5} xx=0.000033=0.33×104<21×104=21×1015
于是有 m = 1 , s = 5 , n = s − m = 5 − 1 = 4 m=1,s=5,n=s-m=5-1=4 m=1,s=5,n=sm=51=4。所以 8.0000 8.0000 8.0000的有效数字为5位,它精确到小数点后4位

例4:设 x ∗ = 30.4500364 ⋯ x^*=30.4500364\cdots x=30.4500364若取 x = 30.45004 x=30.45004 x=30.45004,则
∣ x − x ∗ ∣ = 0.0000036 = 0.36 × 1 0 − 5 < 1 2 × 1 0 − 5 = 1 2 × 1 0 2 − 7 |x-x^*|=0.0000036=0.36\times 10^{-5}<\frac{1}{2}\times 10^{-5}=\frac{1}{2}\times 10^{2-7} xx=0.0000036=0.36×105<21×105=21×1027
所以, 30.45004 30.45004 30.45004的有效数字为7位,它精确到小数点后5位。

相对误差和有效数位之间的关系

根据有效数字和相对误差的概念可以得出两者之间的关系。

定理2:若近似数 x = ± 0. a 1 a 2 a 3 ⋯ a s − 1 a s × 1 0 m ( a 1 ≠ 0 ) x=\pm 0.a_1a_2a_3\cdots a_{s-1}a_s \times 10^m(a_1\neq 0) x=±0.a1a2a3as1as×10m(a1=0)具有s位有效数字,则其相对误差为:
e r ( x ) ≤ ϵ r = 1 2 a 1 × 1 0 − s + 1 e_r(x)\leq \epsilon_r=\frac{1}{2a_1}\times 10^{-s+1} er(x)ϵr=2a11×10s+1
例1:求 6 \sqrt{6} 6 的近似值,使其相对误差不超过 1 2 × 1 0 − 3 \frac{1}{2}\times 10^{-3} 21×103

:因为 6 = 2.4494 \sqrt 6=2.4494 6 =2.4494,取 a 1 = 2 a_1=2 a1=2,设 6 \sqrt 6 6 取s位有效数字,则
1 2 a 1 × 1 0 − s + 1 = 1 2 × 2 × 1 0 − s + 1 = 1 2 × 1 0 − 3 s = 3 ⋯   , 故 s ≥ 4 ,   6 ≈ 2.449 \frac{1}{2a_1}\times 10^{-s+1}=\frac{1}{2\times 2}\times 10^{-s+1}=\frac{1}{2}\times 10^{-3} \\ s=3\cdots ,故s\geq 4,\,\sqrt 6\approx 2.449 2a11×10s+1=2×21×10s+1=21×103s=3,s4,6 2.449
定理3:若近似数 x = ± 0. a 1 a 2 a 3 ⋯ a s × 1 0 m ( a 1 ≠ 0 ) x=\pm 0.a_1a_2a_3\cdots a_s \times 10^m(a_1\neq 0) x=±0.a1a2a3as×10ma1=0的相对误差
e r ( x ) ≤ 1 2 a 1 + 1 × 1 0 − s + 1 e_r(x)\leq \frac{1}{2a_1+1}\times 10^{-s+1} er(x)2a1+11×10s+1
则该近似数有s位有效数字。

从误差和有效数字的定义以及上述两个定理可以看出:绝对误差与小数点后的位数(数的精确度)有关;相对误差与有效数字的位数有关。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值