误差的概念

目录

绝对误差

绝对误差限

相对误差

相对误差限

有效数字

例题


绝对误差

设x是准确值,x*是x的一个近似值。那么x-x*为近似值x*的绝对误差。即\varepsilon (x^*)=x-x^*.

绝对误差限

 绝对误差取绝对值即|\varepsilon (x^*)|就是绝对误差限了。得到\varepsilon。 

定理:对于近似值x*,将其记作0.a_1a_2a_3_{...}a_n \times 10^m(a1 \neq 0),则它的绝对误差限为0.5 \times 10^{m-n}

举个例子,x*=1.414。把其记作0.1414 \times 10^{-1},那么n=4,m=1。如果x*=0.58585,那就将其记作0.58585 \times 10^0,那么n=5,m=0。

相对误差

设x是准确值,x*是x的一个近似值。那么\frac{x-x^*}{x}就是x*的相对误差。也就是用绝对误差去除准确值即\varepsilon_r (x^*)=\frac{\varepsilon(x^*)}{x}=\frac{x-x^*}{x}

相对误差限

那就是相对误差\varepsilon_r (x^*)取绝对值,得到\varepsilon _r

上面这两个相对误差和绝对误差都很简单,记下概念就行。

有效数字

假设x为\sqrt2,其精确值为x=1.414 213 562.

这里取前四位数得到近似值x*=1.414。去求它的绝对误差后可以得到误差限\varepsilon =0.000 \ 213 \ 562< 0.000 \3,也就是不超过近似值的末位数字的半个单位(0.000 5)。

那么我们称从该末位数字到x*左边第一位有效数字的位数n,这n位数字即为有效数字。即近似值x*有4位有效数字。

比如\pi取近似值3.1416,有效数字就是5位。

定理1:对于近似值x*,若具有n位有效数字,则它的相对误差限为\varepsilon _r \leqslant \frac{1}{2a_1} \times 10^{-(n-1)}。反之若相对误差限为\varepsilon _r \leqslant \frac{1}{2a_1+1} \times 10^{-(n-1)},则x*至少具有n位有效数字。(a1代表的是x*的第一个数位(a1的范围为0~9),比如x*=1.414,那么a1=1)


 

这公式基本就是这段的考点了,熟记即可。

例题

例1:已知x是四舍五入后得到的近似值。求x*=1.1021的绝对误差限,相对误差限和有效数字的位数。

先求绝对误差限。因为是四舍五入后得到的值那么\varepsilon (x)=0.000 05。(因为精确值的范围大概在1.1021 \pm 0.00005这个范围里,那么后面这个0.00005就是\varepsilon了)

再求相对误差限。绝对误差除1.1021就好(这里我们只需要求到绝对误差的后一位,所以直接忽略0.00005去除1.1021,因为这数实在是太小了)。得到结果\varepsilon _r(x)=0.000 \ 045

有效数字数x*位数就好了。一共5位所以位数是5.

例2:要使\sqrt 6的近似值的相对误差限小于0.1%,应该取几位有效数字?

首先得已知\sqrt6\approx 2.449....,那么a1=2。接下来套公式即可。

相对误差限要小于0.1%,那么\frac{1}{4} \times 10^{-(n-1)}就要小于0.001,即\frac{1}{4}\times 10^{-(n-1)} \leqslant 0.001。化简得到式子10^{(1-n)} \leqslant 0.004。很明显n应该取4前者为0.001时才能得到结果。所以应该取4位有效数字。(n当然可以更大,取5,6,7...甚至正无穷都是成立的,但这里要的是n的最小值。所以n为4,即至少取4位有效数字)。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值