目录
绝对误差
设x是准确值,x*是x的一个近似值。那么x-x*为近似值x*的绝对误差。即.
绝对误差限
绝对误差取绝对值即就是绝对误差限了。得到
。
定理:对于近似值x*,将其记作,则它的绝对误差限为
举个例子,x*=1.414。把其记作,那么n=4,m=1。如果x*=0.58585,那就将其记作
,那么n=5,m=0。
相对误差
设x是准确值,x*是x的一个近似值。那么就是x*的相对误差。也就是用绝对误差去除准确值即
相对误差限
那就是相对误差取绝对值,得到
。
上面这两个相对误差和绝对误差都很简单,记下概念就行。
有效数字
假设x为,其精确值为x=1.414 213 562.
这里取前四位数得到近似值x*=1.414。去求它的绝对误差后可以得到误差限,也就是不超过近似值的末位数字的半个单位(0.000 5)。
那么我们称从该末位数字到x*左边第一位有效数字的位数n,这n位数字即为有效数字。即近似值x*有4位有效数字。
比如取近似值3.1416,有效数字就是5位。
定理1:对于近似值x*,若具有n位有效数字,则它的相对误差限为。反之若相对误差限为
,则x*至少具有n位有效数字。(a1代表的是x*的第一个数位(a1的范围为0~9),比如x*=1.414,那么a1=1)
这公式基本就是这段的考点了,熟记即可。
例题
例1:已知x是四舍五入后得到的近似值。求x*=1.1021的绝对误差限,相对误差限和有效数字的位数。
先求绝对误差限。因为是四舍五入后得到的值那么=0.000 05。(因为精确值的范围大概在1.1021
0.00005这个范围里,那么后面这个0.00005就是
了)
再求相对误差限。绝对误差除1.1021就好(这里我们只需要求到绝对误差的后一位,所以直接忽略0.00005去除1.1021,因为这数实在是太小了)。得到结果
有效数字数x*位数就好了。一共5位所以位数是5.
例2:要使的近似值的相对误差限小于0.1%,应该取几位有效数字?
首先得已知,那么a1=2。接下来套公式即可。
相对误差限要小于0.1%,那么就要小于0.001,即
。化简得到式子
。很明显n应该取4前者为0.001时才能得到结果。所以应该取4位有效数字。(n当然可以更大,取5,6,7...甚至正无穷都是成立的,但这里要的是n的最小值。所以n为4,即至少取4位有效数字)。