Python | Scipy实现离散型概率分布(伯努利、二项、几何、泊松)

本文介绍了伯努利分布、二项分布和几何分布的基本概念,通过实例展示了如何用Python计算其概率质量函数,并通过图形展示它们的概率分布。重点讲解了单次试验的伯努利分布,以及在多次试验中的二项分布和首次成功所需尝试次数的几何分布。
摘要由CSDN通过智能技术生成

伯努利分布Bernoulli Distribution

随机变量X有伯努利分布, 参数为p(0<p<1),如果它分别以概率p和1-p取1和0为值,是n=1时二项分布的特殊情况,即进行了单次的伯努利试验(仅有两个互斥结果)

#导入包
#数组包
import numpy as np
#绘图包
import matplotlib.pyplot as plt
#统计计算包的统计模块
from scipy import stats
'''1、定义随机变量'''
# 掷硬币,正面朝上为1,反面朝上为0
x=np.arange(0,2,1)
x
array([0, 1])
'''2、求对应的概率质量函数 (PMF)'''
# 得到对应出现的概率
p=0.5
pList=stats.bernoulli.pmf(x,p)
pList
array([0.5, 0.5])
'''3、绘图'''
fig=plt.figure()
# plot在此的作用为显示两个标记点
plt.plot(x,pList,marker='o',linestyle='None')
'''
vlines用于绘制竖直线(vertical lines),
参数说明:vline(x坐标值, y坐标最小值, y坐标值最大值)
'''
plt.vlines(x, 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值