Tableau图表 | 4、散点图

散点图由两组数据构成多个坐标点,多用于判断两个变量之间是否存在某种关联关系或总结坐标点的分布模式。

使用Tableau示例-超市数据

将销售额拖拽到列,利润拖拽到行。订单ID拖拽到详细信息,类别拖拽到颜色。
在这里插入图片描述
Tableau中趋势线模型类型分为五种:线性、对数、指数、多项式、幂
1、线性模型公式:
Y = b0 + b1 * X(b0为截距,b1为斜率)
2、对数模型公式:
Y = b0 + b1 * ln(X)(X>0)
3、指数模型公式:
Y = exp(b0) * exp(b1*X)
4、多项式模型公式:
Y = b0 + b1 * X + b2 * X^2 + …
5、幂模型公式:
Y = b0 * X^b1

从散点图来看,利润和销售额之间大致呈线性关系。
分析-拖拽趋势线到线性
右键趋势线-勾选允许按颜色绘制趋势线,会根据类别颜色绘制3条不同的趋势线;取消勾选此选项,会得到一条整体的趋势线。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### Tableau 散点图入门教程 #### 创建散点图的基础步骤 在Tableau中创建散点图涉及几个关键的操作。首先,确保所使用的数据集包含至少两个数值型字段作为X轴和Y轴的数据源[^1]。 为了构建一个基本的散点图,在工作表视图里需执行如下操作: - 将第一个想要可视化的定量变量拖拽至列(Columns)架上; - 接着将第二个定量变量放置于行(Rows)架位置;此时应该能看到由这两个变量组合而成的一系列离散点组成的图形即为散点图。 如果希望进一步增强图表的信息表达能力,则可以考虑加入更多维度来区分不同的类别或群体特征。例如通过颜色编码(Color),大小(Size)等方式实现更丰富的展示效果[^2]。 另外值得注意的是,当遇到某些特殊需求时可能还需要调整标记类型(Mark Type),默认情况下新建立的工作表会尝试匹配最适合当前配置的图表样式,而用户也可以手动指定使用圆圈(Circle)或其他形式表示各个数据点[^3]。 ```python # Python代码仅用于说明逻辑流程,并非实际可运行程序 worksheet.set_mark_type('circle') # 设置散点形状为圆形 worksheet.color_by_field(category_column) # 使用分类字段给散点上色 ``` #### 数据准备与预处理 如同其他类型的图表一样,在正式绘图之前应当先完成必要的数据清洗以及转换过程。这通常涉及到去除缺失值、异常检测及修正等任务以保证最终呈现出来的结果具有较高的准确性与可靠性[^4]。 此外,对于那些原本并非连续性的属性比如日期时间戳或是分组标签来说,往往也需要额外设定其角色(Role)以便让工具能够正确认识并应用这些信息参与计算或者布局安排[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值