(LeetCode 动态规划(基础版) )931. 下降路径最小和(动态规划dp)

题目:931. 下降路径最小和

在这里插入图片描述
在这里插入图片描述

思路:动态规划dp,时间复杂度0(nm)。
从第二排开始dp。

C++版本:

class Solution {
public:
    int minFallingPathSum(vector<vector<int>>& matrix) {
        int n=matrix.size();
        if(n==1) return matrix[0][0];
        int mn=INT_MAX;
        for(int i=1;i<n;i++){
            for(int j=0;j<n;j++){
                int t=matrix[i-1][j];
                if(j>0) t=min(t,matrix[i-1][j-1]);
                if(j<n-1) t=min(t,matrix[i-1][j+1]);
                matrix[i][j]+=t;
                if(i==n-1) mn=min(mn,matrix[i][j]);
            }
        }
        return mn;
    }
};

JAVA版本:

class Solution {
    public int minFallingPathSum(int[][] matrix) {
        int n=matrix.length;
        if(n==1) return matrix[0][0];
        int mn=Integer.MAX_VALUE;
        for(int i=1;i<n;i++){
            for(int j=0;j<n;j++){
                int t=matrix[i-1][j];
                if(j>0) t=Math.min(t,matrix[i-1][j-1]);
                if(j<n-1) t=Math.min(t,matrix[i-1][j+1]);
                matrix[i][j]+=t;
                if(i==n-1) mn=Math.min(mn,matrix[i][j]);
            }
        }
        return mn;
    }
}

Go版本:

func minFallingPathSum(matrix [][]int) int {
    n:=len(matrix)
    if n==1 {
        return matrix[0][0]
    }
    mn:=math.MaxInt
    for i:=1;i<n;i++{
        for j:=0;j<n;j++ {
            t:=matrix[i-1][j]
            if j>0 {
                t=min(t,matrix[i-1][j-1])
            }
            if j<n-1 {
                 t=min(t,matrix[i-1][j+1])
            }
            matrix[i][j]+=t;
            if i==n-1 {
                mn=min(mn,matrix[i][j]);
            }
        }
    }
    return mn
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值