图片数据集划分为训练集、测试集、验证集

该博文提供了一段Python代码,用于将图像数据集按照特定比例划分为训练集、验证集和测试集。适用于机器学习项目,如在天池平台上的学习任务。代码中首先定义了创建目录的函数,然后通过遍历原始数据集,随机打乱图片顺序并按比例分配到不同集合中。最后,博主展示了代码执行结果。
摘要由CSDN通过智能技术生成
原博文:link.

亲测有用
主要是用于天池学习项目:link.

# -*- coding: utf-8 -*-
"""
将数据集划分为训练集,验证集,测试集
"""

import os
import random
import shutil
# 创建保存图像的文件夹
def makedir(new_dir):
    if not os.path.exists(new_dir):
        os.makedirs(new_dir)
random.seed(1) # 随机种子

# 1.确定原图像数据集路径
dataset_dir = "D:/test2021/train_val_test0811/"  ##原始数据集路径
# 2.确定数据集划分后保存的路径
split_dir = "D:/test2021/after0811/"  ##划分后保存路径
train_dir = os.path.join(split_dir, "train")
valid_dir = os.path.join(split_dir, "val")
test_dir = os.path.join(split_dir, "test")
# 3.确定将数据集划分为训练集,验证集,测试集的比例
train_pct = 0.9
valid_pct = 0.1
test_pct = 0
# 4.划分
for root, dirs, files in os.walk(dataset_dir):
    for sub_dir in dirs: # 遍历0,1,2,3,4,5...9文件夹
        imgs = os.listdir(os.path.join(root, sub_dir)) # 展示目标文件夹下所有的文件名
        imgs = list(filter(lambda x: x.endswith('.png'), imgs)) # 取到所有以.png结尾的文件,如果改了图片格式,这里需要修改
        random.shuffle(imgs)  # 乱序图片路径
        img_count = len(imgs)  # 计算图片数量
        train_point = int(img_count * train_pct)  # 0:train_pct
        valid_point = int(img_count * (train_pct + valid_pct))  # train_pct:valid_pct

        for i in range(img_count):
            if i < train_point:  # 保存0-train_point的图片到训练集
                out_dir = os.path.join(train_dir, sub_dir)
            elif i < valid_point:  # 保存train_point-valid_point的图片到验证集
                out_dir = os.path.join(valid_dir, sub_dir)
            else:  #  保存valid_point-结束的图片到测试集
                out_dir = os.path.join(test_dir, sub_dir)
            makedir(out_dir) # 创建文件夹
            target_path = os.path.join(out_dir, imgs[i]) # 指定目标保存路径
            src_path = os.path.join(dataset_dir, sub_dir, imgs[i])  #指定目标原图像路径
            shutil.copy(src_path, target_path)  # 复制图片

        print('Class:{}, train:{}, valid:{}, test:{}'.format(sub_dir, train_point, valid_point-train_point,
                                                             img_count-valid_point))

结果截图:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Jupyter Notebook 程序执行结果:
在这里插入图片描述

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值