原博文:link.
亲测有用
主要是用于天池学习项目:link.
# -*- coding: utf-8 -*-
"""
将数据集划分为训练集,验证集,测试集
"""
import os
import random
import shutil
# 创建保存图像的文件夹
def makedir(new_dir):
if not os.path.exists(new_dir):
os.makedirs(new_dir)
random.seed(1) # 随机种子
# 1.确定原图像数据集路径
dataset_dir = "D:/test2021/train_val_test0811/" ##原始数据集路径
# 2.确定数据集划分后保存的路径
split_dir = "D:/test2021/after0811/" ##划分后保存路径
train_dir = os.path.join(split_dir, "train")
valid_dir = os.path.join(split_dir, "val")
test_dir = os.path.join(split_dir, "test")
# 3.确定将数据集划分为训练集,验证集,测试集的比例
train_pct = 0.9
valid_pct = 0.1
test_pct = 0
# 4.划分
for root, dirs, files in os.walk(dataset_dir):
for sub_dir in dirs: # 遍历0,1,2,3,4,5...9文件夹
imgs = os.listdir(os.path.join(root, sub_dir)) # 展示目标文件夹下所有的文件名
imgs = list(filter(lambda x: x.endswith('.png'), imgs)) # 取到所有以.png结尾的文件,如果改了图片格式,这里需要修改
random.shuffle(imgs) # 乱序图片路径
img_count = len(imgs) # 计算图片数量
train_point = int(img_count * train_pct) # 0:train_pct
valid_point = int(img_count * (train_pct + valid_pct)) # train_pct:valid_pct
for i in range(img_count):
if i < train_point: # 保存0-train_point的图片到训练集
out_dir = os.path.join(train_dir, sub_dir)
elif i < valid_point: # 保存train_point-valid_point的图片到验证集
out_dir = os.path.join(valid_dir, sub_dir)
else: # 保存valid_point-结束的图片到测试集
out_dir = os.path.join(test_dir, sub_dir)
makedir(out_dir) # 创建文件夹
target_path = os.path.join(out_dir, imgs[i]) # 指定目标保存路径
src_path = os.path.join(dataset_dir, sub_dir, imgs[i]) #指定目标原图像路径
shutil.copy(src_path, target_path) # 复制图片
print('Class:{}, train:{}, valid:{}, test:{}'.format(sub_dir, train_point, valid_point-train_point,
img_count-valid_point))
结果截图:
Jupyter Notebook 程序执行结果: