在机器学习模型开发中,数据集的构建与划分至关重要。训练数据集的大小、稀缺性和数据平衡性直接影响模型的学习效果和泛化能力。验证数据集用于超参数调整,而测试数据集则评估模型的泛化性能,从而防止过拟合。本文探讨多种数据划分策略,如70/30、80/20、75/25和60/20/20,各具适用场景和优缺点。这些策略帮助研究人员合理选择训练、验证和测试数据集。最后,我们将通过R语言对iris数据集进行具体示范,展示如何实现这些划分策略及其在模型开发中的应用效果。
一、训练数据集
在机器学习模型的训练和评估中,数据集一般分为三类:训练数据集、测试数据集和验证数据集。每个数据集都发挥着独特的作用,帮助我们提高模型的准确性和可靠性。
1、数据集的大小
在机器学习模型的开发过程中,训练数据集(Train Datas