7篇1章3节:详析训练数据集、测试数据集和验证数据集及其划分策略

在机器学习模型开发中,数据集的构建与划分至关重要。训练数据集的大小、稀缺性和数据平衡性直接影响模型的学习效果和泛化能力。验证数据集用于超参数调整,而测试数据集则评估模型的泛化性能,从而防止过拟合。本文探讨多种数据划分策略,如70/30、80/20、75/25和60/20/20,各具适用场景和优缺点。这些策略帮助研究人员合理选择训练、验证和测试数据集。最后,我们将通过R语言对iris数据集进行具体示范,展示如何实现这些划分策略及其在模型开发中的应用效果。

一、训练数据集

在机器学习模型的训练和评估中,数据集一般分为三类:训练数据集、​​​​​​​测试数据集和验证数据集。每个数据集都发挥着独特的作用,帮助我们提高模型的准确性和可靠性。​​​​​​​

1、数据集的大小

在机器学习模型的开发过程中,训练数据集(Train Datas

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R科学与人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值