《视觉 SLAM 十四讲》V2 第 4 讲 李群与李代数 【什么样的相机位姿 最符合 当前观测数据】

P71


在这里插入图片描述

什么样的相机位姿 最符合 当前观测数据。

求解最优的 R , t \bm{R, t} R,t, 使得误差最小化。

李群-李代数间转换
旋转矩阵_正交且行列式为1
位姿估计变成无约束的优化问题

4.1 李群与李代数基础

在这里插入图片描述

: 只有一个(良好的)运算的集合。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
封结幺逆 、 丰俭由你

在这里插入图片描述

李群: 具有连续(光滑)性质的群。
一个刚体能够连续地在空间中运动: SO(3)和 SE(3)均是李群。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在 t = 0 附近,旋转矩阵可以由 e x p ( ϕ 0 ∧ t ) exp(\phi_0^{\land}t) exp(ϕ0t)计算得到

4.1.3 李代数的定义

在这里插入图片描述
李代数 描述了李群的局部性质

  • 单位元 附近的正切空间。

在这里插入图片描述

在这里插入图片描述

g = ( R 3 , R , × ) \mathfrak{g}=(\mathbb{R}^3, \mathbb{R}, \times) g=(R3,R,×)构成了一个李代数

4.1.4 李代数 so(3)

s o ( 3 ) \mathfrak{so}(3) so(3): 一个由三维向量组成的集合,每个向量对应一个反对称矩阵,可以用于表达旋转矩阵的导数
s o ( 3 ) = { ϕ ∈ R 3 , Φ = ϕ ∧ ∈ R 3 × 3 } \mathfrak{so}(3)=\{\bm{\phi}\in\mathbb{R}^3,\bm{\Phi}=\bm{\phi}^{\land}\in\mathbb{R}^{3\times3}\} so(3)={ϕR3,Φ=ϕR3×3}

在这里插入图片描述

在这里插入图片描述

4.1.5 李代数 se(3)

李群 S E ( 3 ) SE(3) SE(3) 对应的李代数 s e ( 3 ) \mathfrak{se}(3) se(3)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.2 指数与对数映射

4.2.1 SO(3)上的指数映射

s o ( 3 ) \mathfrak{so}(3) so(3)旋转向量 组成的空间
指数映射: 罗德里格斯公式

R = e x p ( ϕ ∧ ) = e x p ( θ a ∧ ) = c o s θ I + ( 1 − c o s θ ) a a T + s i n θ a ∧ \bm{R}=exp(\phi^{\land})=exp(\theta\bm{a}^{\land})=cos\theta\bm{I} + (1-cos\theta)\bm{a}\bm{a}^T+sin\theta\bm{a}^{\land} R=exp(ϕ)=exp(θa)=cosθI+(1cosθ)aaT+sinθa

对数映射: 李群 S O ( 3 ) SO(3) SO(3) 中的元素 ——> 李代数 s o ( 3 ) \mathfrak{so}(3) so(3)

在这里插入图片描述
把旋转角固定在 ± π ±\pi ±π 之间,则李群和李代数 元素 一一对应。

————————————————

罗德里格斯公式推导

在这里插入图片描述

在这里插入图片描述

e x p ( ϕ ∧ ) = e x p ( θ a ∧ ) = ∑ n = 0 ∞ 1 n ! ( θ a ∧ ) n n = 0 , 1 , 2 , 3 , . . . 原式 = I + θ a ∧ + 1 2 ! θ 2 a ∧ a ∧ + 1 3 ! θ 3 a ∧ a ∧ a ∧ + 1 4 ! θ 4 ( a ∧ ) 4 + ⋅ ⋅ ⋅ 将 a ∧ a ∧ = a a T − I ; a ∧ a ∧ a ∧ = ( a ∧ ) 3 = − a ∧ 代入 原式 = a a T − a ∧ a ∧ + θ a ∧ + 1 2 ! θ 2 a ∧ a ∧ − 1 3 ! θ 3 a ∧ − 1 4 ! θ 4 ( a ∧ ) 2 + ⋅ ⋅ ⋅ = a a T + ( θ − 1 3 ! θ 3 + 1 5 ! θ 5 − ⋅ ⋅ ⋅ ) a ∧ − ( 1 − 1 2 ! θ 2 + 1 4 ! θ 4 − ⋅ ⋅ ⋅ ) a ∧ a ∧ = a ∧ a ∧ + I + s i n θ a ∧ − c o s θ a ∧ a ∧ = ( 1 − c o s θ ) a ∧ a ∧ + I + s i n θ a ∧ = ( 1 − c o s θ ) ( a a T − I ) + I + s i n θ a ∧ = c o s θ I + ( 1 − c o s θ ) a a T + s i n θ a ∧ \begin{align*}exp(\bm{\phi}^{\land}) &=exp(\theta\bm{a}^{\land})=\sum\limits_{n=0}^{\infty}\frac{1}{n!} (\theta\bm{a}^{\land})^n \\ & n = 0, 1, 2, 3, ... \\ 原式 & = \bm{I} + \theta\bm{a}^{\land} + \frac{1}{2!}\theta^2\bm{a}^{\land}\bm{a}^{\land} + \frac{1}{3!}\theta^3\bm{a}^{\land}\bm{a}^{\land}\bm{a}^{\land} +\frac{1}{4!}\theta^4(\bm{a}^{\land})^4+···\\ & 将\bm{a}^{\land}\bm{a}^{\land} = \bm{a}\bm{a}^T - \bm{I}; \bm{a}^{\land}\bm{a}^{\land}\bm{a}^{\land} = (\bm{a}^{\land})^3 =-\bm{a}^{\land} 代入 \\ 原式& = \bm{a}\bm{a}^T - \bm{a}^{\land}\bm{a}^{\land} + \theta\bm{a}^{\land} + \frac{1}{2!}\theta^2\bm{a}^{\land}\bm{a}^{\land}-\frac{1}{3!}\theta^3\bm{a}^{\land}-\frac{1}{4!}\theta^4(\bm{a}^{\land})^2+···\\ & = \bm{a}\bm{a}^T + (\theta - \frac{1}{3!}\theta^3+\frac{1}{5!}\theta^5-···)\bm{a}^{\land}-(1-\frac{1}{2!}\theta^2+\frac{1}{4!}\theta^4-···)\bm{a}^{\land}\bm{a}^{\land}\\ & = \bm{a}^{\land}\bm{a}^{\land} + \bm{I}+sin\theta \bm{a}^{\land}-cos\theta\bm{a}^{\land}\bm{a}^{\land}\\ &=(1-cos\theta)\bm{a}^{\land}\bm{a}^{\land}+\bm{I} + sin\theta\bm{a}^{\land}\\ &= (1-cos\theta)(\bm{a}\bm{a}^T-\bm{I})+\bm{I} + sin\theta\bm{a}^{\land}\\ & = cos\theta\bm{I}+ (1-cos\theta)\bm{a}\bm{a}^T + sin\theta\bm{a}^{\land} \end{align*} exp(ϕ)原式原式=exp(θa)=n=0n!1(θa)nn=0,1,2,3,...=I+θa+2!1θ2aa+3!1θ3aaa+4!1θ4(a)4+⋅⋅⋅aa=aaTI;aaa=(a)3=a代入=aaTaa+θa+2!1θ2aa3!1θ3a4!1θ4(a)2+⋅⋅⋅=aaT+(θ3!1θ3+5!1θ5⋅⋅⋅)a(12!1θ2+4!1θ4⋅⋅⋅)aa=aa+I+sinθacosθaa=(1cosθ)aa+I+sinθa=(1cosθ)(aaTI)+I+sinθa=cosθI+(1cosθ)aaT+sinθa

e x p ( θ a ∧ ) = c o s θ I + ( 1 − c o s θ ) a a T + s i n θ a ∧ exp(\theta\bm{a}^{\land})=cos\theta\bm{I} + (1-cos\theta)\bm{a}\bm{a}^T+sin\theta\bm{a}^{\land} exp(θa)=cosθI+(1cosθ)aaT+sinθa

—————

在这里插入图片描述

$\bm{a}^{\land}$

a ∧ \bm{a}^{\land} a
————————————————

4.2.2 SE(3) 上的指数映射

在这里插入图片描述
——————
推导:
∑ n = 0 ∞ 1 ( n + 1 ) ! ( ϕ ∧ ) n = ∑ n = 0 ∞ 1 ( n + 1 ) ! ( θ a ∧ ) n = I + 1 2 ! θ a ∧ + 1 3 ! θ 2 ( a ∧ ) 2 + 1 4 ! θ 3 ( a ∧ ) 3 + 1 5 ! θ 4 ( a ∧ ) 4 + ⋅ ⋅ ⋅ = 1 θ ( 1 2 ! θ 2 − 1 4 ! θ 4 + ⋅ ⋅ ⋅ ) a ∧ + 1 θ ( 1 3 ! θ 3 − 1 5 ! θ 5 + ⋅ ⋅ ⋅ ) ( a ∧ ) 2 + I = 1 θ ( 1 − c o s θ ) a ∧ + 1 θ ( θ − s i n θ ) ( a a T − I ) + I = s i n θ θ I + ( 1 − s i n θ θ ) a a T + 1 − c o s θ θ a ∧ = d e f J \begin{align*} \sum\limits_{n=0}^{\infty}\frac{1}{(n+1)!}(\bm{\phi}^{\land})^n &= \sum\limits_{n=0}^{\infty}\frac{1}{(n+1)!}(\theta\bm{a}^{\land})^n\\ & = \bm{I} + \frac{1}{2!}\theta\bm{a}^{\land} + \frac{1}{3!}\theta^2(\bm{a}^{\land})^2 + \frac{1}{4!}\theta^3(\bm{a}^{\land})^3 + \frac{1}{5!}\theta^4(\bm{a}^{\land})^4+···\\ & = \frac{1}{\theta}( \frac{1}{2!}\theta^2- \frac{1}{4!}\theta^4+···)\bm{a}^{\land} + \frac{1}{\theta}( \frac{1}{3!}\theta^3- \frac{1}{5!}\theta^5+···)(\bm{a}^{\land})^2+\bm{I} \\ & = \frac{1}{\theta}( 1-cos\theta)\bm{a}^{\land} + \frac{1}{\theta}(\theta-sin\theta)(\bm{a}\bm{a}^T-\bm{I})+\bm{I} \\ & = \frac{sin\theta}{\theta}\bm{I}+(1-\frac{sin\theta}{\theta})\bm{a}\bm{a}^T + \frac{1-cos\theta}{\theta}\bm{a}^{\land}\\ & \overset{\mathrm{def}}{=} \bm{J} \end{align*} n=0(n+1)!1(ϕ)n=n=0(n+1)!1(θa)n=I+2!1θa+3!1θ2(a)2+4!1θ3(a)3+5!1θ4(a)4+⋅⋅⋅=θ1(2!1θ24!1θ4+⋅⋅⋅)a+θ1(3!1θ35!1θ5+⋅⋅⋅)(a)2+I=θ1(1cosθ)a+θ1(θsinθ)(aaTI)+I=θsinθI+(1θsinθ)aaT+θ1cosθa=defJ

J = s i n θ θ I + ( 1 − s i n θ θ ) a a T + 1 − c o s θ θ a ∧ \bm{J}=\frac{sin\theta}{\theta}\bm{I}+(1-\frac{sin\theta}{\theta})\bm{a}\bm{a}^T + \frac{1-cos\theta}{\theta}\bm{a}^{\land} J=θsinθI+(1θsinθ)aaT+θ1cosθa

R = c o s θ I + ( 1 − c o s θ ) a a T + s i n θ a ∧ \bm{R}=cos\theta\bm{I}+(1-cos\theta)\bm{a}\bm{a}^T + sin\theta\bm{a}^{\land} R=cosθI+(1cosθ)aaT+sinθa

————

t = J ρ \bm{t=Jρ} t=
平移部分发生了一次以 J \bm{J} J 为系数矩阵的 线性变换。

SO(3),SE(3),so(3),se(3)的对应关系

在这里插入图片描述

4.3 李代数求导与扰动模型

Baker-Campbell-Hausdorff公式(BCH公式)
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.3.2 SO(3)上的李代数求导

位姿由SO(3)上的旋转矩阵SE(3)上的变换矩阵 描述

设某时刻机器人的位姿为 T \bm{T} T, 观察到了一个世界坐标位于 p \bm{p} p 的点,产生了一个观测数据 z \bm{z} z
计算理想的观测与实际数据之间的误差: e = z − T p \bm{e = z-Tp} e=zTp
假设一共有 N N N 个这样的路标点和观测,对机器人进行位姿估计,相当于寻找一个最优的 T \bm{T} T ,使得整体误差最小化:
min ⁡ T J ( T ) = ∑ i = 1 N ∣ ∣ z i − T p i ∣ ∣ 2 2 \min\limits_{\bm{T}}J(\bm{T}) = \sum\limits_{i=1}^{N}||\bm{z_i-Tp_i}||_2^2 TminJ(T)=i=1N∣∣ziTpi22

求解上述问题,需要计算目标函数 J J J 关于变换矩阵 T \bm{T} T 的导数。

使用 李代数 解决 求导问题 的2种思路:
1、用李代数表示姿态,然后根据李代数加法对李代数求导。
2、对李群左乘或右乘微小扰动,然后对该扰动求导,称为左扰动右扰动模型。

4.3.3 李代数求导

在这里插入图片描述
——————
在这里插入图片描述
推导:
∂ ( R p ) ∂ R = R 对应的李代数为 ϕ ∂ ( exp ⁡ ( ϕ ∧ ) p ) ∂ ϕ = lim ⁡ Δ ϕ → 0 exp ⁡ ( ( ϕ + Δ ϕ ) ∧ ) p − exp ⁡ ( ϕ ∧ ) p Δ ϕ 由式 ( 4.35 ) = lim ⁡ Δ ϕ → 0 exp ⁡ ( ( J l Δ ϕ ) ∧ ) exp ⁡ ( ϕ ∧ ) p − exp ⁡ ( ϕ ∧ ) p Δ ϕ = lim ⁡ Δ ϕ → 0 ( I + ( J l Δ ϕ ) ∧ ) exp ⁡ ( ϕ ∧ ) p − exp ⁡ ( ϕ ∧ ) p Δ ϕ = lim ⁡ Δ ϕ → 0 ( J l Δ ϕ ) ∧ exp ⁡ ( ϕ ∧ ) p Δ ϕ a ∧ 等效于 a × , 因此根据叉乘的性质 = lim ⁡ Δ ϕ → 0 − ( exp ⁡ ( ϕ ∧ ) p ) ∧ J l Δ ϕ Δ ϕ = − ( R p ) ∧ J l \begin{align*}\frac{\partial(\bm{Rp})}{\partial\bm{R}} &\xlongequal{R对应的李代数为\bm{\phi}}\frac{\partial(\exp(\bm{\phi}^{\land})\bm{p})}{\partial\bm{\phi}} \\ & = \lim\limits_{Δ\bm{\phi}\to0}\frac{\exp((\bm{\phi}+Δ\bm{\phi})^{\land})\bm{p}-\exp(\bm{\phi}^{\land})\bm{p}}{Δ\bm{\phi}} \\ & 由 式(4.35)\\ & = \lim\limits_{Δ\phi\to0}\frac{\exp((\bm{J}_lΔ\bm{\phi})^{\land})\exp(\bm{\phi}^{\land})\bm{p}-\exp(\bm{\phi}^{\land})\bm{p}}{Δ\bm{\phi}} \\ & = \lim\limits_{Δ\bm{\phi}\to0}\frac{(\bm{I}+(\bm{J}_lΔ\bm{\phi})^{\land})\exp(\bm{\phi}^{\land})\bm{p}-\exp(\bm{\phi}^{\land})\bm{p}}{Δ\bm{\phi}} \\ & = \lim\limits_{Δ\bm{\phi}\to0}\frac{(\bm{J}_lΔ\bm{\phi})^{\land}\exp(\bm{\phi}^{\land})\bm{p}}{Δ\bm{\phi}} \\ & a^{\land} 等效于 a \times ,因此根据叉乘的性质 \\ & = \lim\limits_{Δ\bm{\phi}\to0}\frac{-(\exp(\bm{\phi}^{\land})\bm{p})^{\land}\bm{J}_lΔ\bm{\phi}}{Δ\bm{\phi}} \\ & = -(\bm{Rp})^{\land}\bm{J}_l \end{align*} R(Rp)R对应的李代数为ϕ ϕ(exp(ϕ)p)=Δϕ0limΔϕexp((ϕ+Δϕ))pexp(ϕ)p由式(4.35)=Δϕ0limΔϕexp((JlΔϕ))exp(ϕ)pexp(ϕ)p=Δϕ0limΔϕ(I+(JlΔϕ))exp(ϕ)pexp(ϕ)p=Δϕ0limΔϕ(JlΔϕ)exp(ϕ)pa等效于a×,因此根据叉乘的性质=Δϕ0limΔϕ(exp(ϕ)p)JlΔϕ=(Rp)Jl

∂ ( exp ⁡ ( ϕ ∧ ) p ) ∂ ϕ = − ( R p ) ∧ J l \frac{\partial(\exp(\bm{\phi}^{\land})\bm{p})}{\partial\bm{\phi}} = -(\bm{Rp})^{\land}\bm{J}_l ϕ(exp(ϕ)p)=(Rp)Jl
——————

4.3.4 扰动模型(左乘)【更简单 的导数计算模型】

R \bm{R} R 进行一次扰动 Δ R Δ\bm{R} ΔR ,看结果对于 扰动的变化率。

设左扰动 Δ R Δ\bm{R} ΔR 对应的李代数 为 φ \bm{\varphi} φ

∂ ( R p ) ∂ φ = lim ⁡ φ → 0 exp ⁡ ( φ ∧ ) exp ⁡ ( ϕ ∧ ) p − exp ⁡ ( ϕ ∧ ) p φ = lim ⁡ φ → 0 ( I + φ ∧ ) exp ⁡ ( ϕ ∧ ) p − exp ⁡ ( ϕ ∧ ) p φ = lim ⁡ φ → 0 φ ∧ exp ⁡ ( ϕ ∧ ) p φ = lim ⁡ φ → 0 φ ∧ R p φ = lim ⁡ φ → 0 − ( R p ) ∧ φ φ = − ( R p ) ∧ \begin{align*}\frac{\partial(\bm{Rp})}{\partial\bm{\varphi}} &= \lim\limits_{\bm{\varphi}\to0}\frac{\exp(\bm{\varphi}^{\land})\exp(\bm{\phi}^{\land})\bm{p}-\exp(\bm{\phi}^{\land})\bm{p}}{\bm{\varphi}}\\ &= \lim\limits_{\bm{\varphi}\to0}\frac{(\bm{I} + \bm{\varphi}^{\land})\exp(\bm{\phi}^{\land})\bm{p}-\exp(\bm{\phi}^{\land})\bm{p}}{\bm{\varphi}}\\ &= \lim\limits_{\bm{\varphi}\to0}\frac{\bm{\varphi}^{\land}\exp(\bm{\phi}^{\land})\bm{p}}{\bm{\varphi}}\\ &= \lim\limits_{\bm{\varphi}\to0}\frac{\bm{\varphi}^{\land}\bm{Rp}}{\bm{\varphi}}\\ &= \lim\limits_{\bm{\varphi}\to0}\frac{-(\bm{Rp})^{\land}\bm{\varphi}}{\bm{\varphi}}\\ &= -(\bm{Rp})^{\land} \end{align*} φ(Rp)=φ0limφexp(φ)exp(ϕ)pexp(ϕ)p=φ0limφ(I+φ)exp(ϕ)pexp(ϕ)p=φ0limφφexp(ϕ)p=φ0limφφRp=φ0limφ(Rp)φ=(Rp)

相比于方法一(用李代数表示姿态,然后根据李代数加法对李代数求导), 扰动模型省去一个雅可比 J l \bm{J}_l Jl的计算。

4.3.5 SE(3)上的李代数求导

假设某空间点 p \bm{p} p 经过一次变换 T \bm{T} T (对应李代数为 ξ \bm{\xi} ξ), 得到 T p \bm{Tp} Tp
现在给 T \bm{T} T 左乘一个扰动 Δ T = exp ⁡ ( Δ ξ ∧ ) Δ\bm{T} = \exp(Δ\bm{\xi}^{\land}) ΔT=exp(Δξ)
设扰动项的李代数为 Δ ξ = [ Δ ρ , Δ ϕ ] T Δ\bm{\xi}=[Δ\bm{\rho},Δ\bm{\phi}]^T Δξ=[Δρ,Δϕ]T,则
在这里插入图片描述

∂ ( T p ) ∂ Δ ξ = lim ⁡ Δ ξ → 0 exp ⁡ ( Δ ξ ∧ ) exp ⁡ ( ξ ∧ ) p − exp ⁡ ( ξ ∧ ) p Δ ξ = lim ⁡ Δ ξ → 0 ( I + Δ ξ ∧ ) exp ⁡ ( ξ ∧ ) p − exp ⁡ ( ξ ∧ ) p Δ ξ = lim ⁡ Δ ξ → 0 Δ ξ ∧ exp ⁡ ( ξ ∧ ) p Δ ξ = lim ⁡ Δ ξ → 0 [ Δ ϕ ∧ Δ ρ 0 T 0 ] [ R p + t 1 ] Δ ξ = lim ⁡ Δ ξ → 0 [ Δ ϕ ∧ ( R p + t ) + Δ ρ 0 T ] [ Δ ρ , Δ ϕ ] T = [ I − ( R p + t ) ∧ 0 T 0 T ] = d e f ( T p ) ⨀ \begin{align*}\frac{\partial(\bm{Tp})}{\partial{Δ\bm{\xi}}} &= \lim\limits_{Δ\bm{\xi}\to0}\frac{\exp(Δ\bm{\xi}^{\land})\exp(\bm{\xi}^{\land})\bm{p}-\exp(\bm{\xi}^{\land})\bm{p}}{Δ\bm{\xi}} \\ &= \lim\limits_{Δ\bm{\xi}\to0}\frac{(\bm{I} +Δ\bm{\xi}^{\land})\exp(\bm{\xi}^{\land})\bm{p}-\exp(\bm{\xi}^{\land})\bm{p}}{Δ\bm{\xi}} \\ &= \lim\limits_{Δ\bm{\xi}\to0}\frac{Δ\bm{\xi}^{\land}\exp(\bm{\xi}^{\land})\bm{p}}{Δ\bm{\xi}} \\ &=\lim\limits_{Δ\bm{\xi}\to0} \frac{\begin{bmatrix} Δ\bm{\phi}^{\land} & \Delta\bm{\rho}\\ \bm{0}^T & 0 \end{bmatrix}\begin{bmatrix} \bm{Rp+t}\\ 1 \end{bmatrix}}{Δ\bm{\xi}}\\ &=\lim\limits_{Δ\bm{\xi}\to0} \frac{\begin{bmatrix} \Delta\bm{\phi}^{\land}(\bm{Rp+t})+\Delta\bm{\rho}\\ \bm{0}^T \end{bmatrix}}{[Δ\bm{\rho},Δ\bm{\phi}]^T} \\ & = \begin{bmatrix} \bm{I} & -(\bm{Rp+t})^{\land} \\ \bm{0}^T & \bm{0}^T \end{bmatrix} \\ &\overset{\mathrm{def}}{=}(\bm{Tp})^{\bigodot} \end{align*} Δξ(Tp)=Δξ0limΔξexp(Δξ)exp(ξ)pexp(ξ)p=Δξ0limΔξ(I+Δξ)exp(ξ)pexp(ξ)p=Δξ0limΔξΔξexp(ξ)p=Δξ0limΔξ[Δϕ0TΔρ0][Rp+t1]=Δξ0lim[Δρ,Δϕ]T[Δϕ(Rp+t)+Δρ0T]=[I0T(Rp+t)0T]=def(Tp)
在这里插入图片描述

$\overset{\mathrm{def}}{=}(\bm{Tp})^{\bigodot}$

4.4 Sophus应用 【Code】

SO(3)、SE(3)
二维运动SO(2)和SE(2)
相似变换 Sim(3)

mkdir build && cd build
cmake ..
make 
./useSophus

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)

project(useSophus)

find_package(Sophus REQUIRED)
include_directories( ${Sophus_INCLUDE_DIRS})

add_executable(useSophus useSophus.cpp)
target_link_libraries(useSophus ${Sophus_LIBRARIES})
#include<iostream>
#include<cmath>
#include<Eigen/Core>
#include<Eigen/Geometry>
#include "sophus/se3.h"

using namespace std;
using namespace Eigen;

/* sophus 的基本用法 */
int main(int argc, char **argv){
    // 沿 Z轴  转90° 的旋转矩阵
    Matrix3d R = AngleAxisd(M_PI/2, Vector3d(0, 0, 1)).toRotationMatrix();

    /* 四元数 */
    Quaterniond q(R);
    Sophus::SO3 SO3_R(R);
    Sophus::SO3 SO3_q(q);

    cout << "SO(3) from matrix:\n" << SO3_R.matrix() << endl;
    cout << "SO(3) from quatenion:\n" << SO3_q.matrix() << endl;
    cout << "they are equal" << endl;

    return 0;
}

在这里插入图片描述

#include<iostream>
#include<cmath>
#include<Eigen/Core>
#include<Eigen/Geometry>
#include "sophus/se3.h"

using namespace std;
using namespace Eigen;

/* sophus 的基本用法 */
int main(int argc, char **argv){
    /* 使用 对数映射 获得  李代数*/
    Matrix3d R = AngleAxisd(M_PI/2, Vector3d(0, 0, 1)).toRotationMatrix();
    Sophus::SO3 SO3_R(R);
    Vector3d so3 = SO3_R.log();
    cout << "so3 = " << so3.transpose() << endl;
    
    // hat  向量 ——> 反对称矩阵
    cout << "so3 hat = \n" << Sophus::SO3::hat(so3)<< endl;

    // vee  反对称 ——> 向量
    cout << "so3 hat vee = " << Sophus::SO3::vee(Sophus::SO3::hat(so3)).transpose() << endl;

    Vector3d update_so3(1e-4, 0, 0);// 假设更新量为这么多
    Sophus::SO3 SO3_updated =Sophus::SO3::exp(update_so3) * SO3_R;
    cout << "SO3 updated = \n" << SO3_updated.matrix() << endl;
    return 0;
}

在这里插入图片描述

#include<iostream>
#include<cmath>
#include<Eigen/Core>
#include<Eigen/Geometry>
#include "sophus/se3.h"

using namespace std;
using namespace Eigen;

/* sophus   SE(3) 的基本用法 */
int main(int argc, char **argv){
    
    Matrix3d R = AngleAxisd(M_PI/2, Vector3d(0, 0, 1)).toRotationMatrix();  // 沿 Z轴 旋转 90° 的旋转矩阵
    Vector3d t(1, 0, 0);  // 沿 X 轴平移1
    Sophus::SE3 SE3_Rt(R, t);  // 从R,t 构造 SE(3)
    Quaterniond q(R);
    Sophus::SE3 SE3_qt(q, t); // 从q, t 构造 SE(3)
    cout << "SE3 from R, t = \n" << SE3_Rt.matrix() << endl;
    cout << "SE3 from q, t = \n" << SE3_qt.matrix() << endl; 
    
    
    /* 李代数se(3) 是一个 6 维 向量*/
    typedef Eigen::Matrix<double, 6, 1> Vector6d;
    Vector6d se3 = SE3_Rt.log();
    cout << "se3 = " << se3.transpose() << endl;
    
    // hat  向量 ——> 反对称矩阵
    cout << "se3 hat = \n" << Sophus::SE3::hat(se3)<< endl;
    // vee  反对称 ——> 向量
    cout << "se3 hat vee = " << Sophus::SE3::vee(Sophus::SE3::hat(se3)).transpose() << endl;
    
    // 更新
    Vector6d update_se3;// 更新量
    update_se3.setZero();
    update_se3(0, 0) = 1e-4;
    Sophus::SE3 SE3_updated =Sophus::SE3::exp(update_se3) * SE3_Rt;
    cout << "SE3 updated = \n" << SE3_updated.matrix() << endl;
    return 0;
}

在这里插入图片描述

4.4.2 评估轨迹的误差 【Code】

————————
考虑一条估计轨迹 T e s t i , i \bm{T}_{esti,i} Testi,i 和真实轨迹 T g t , i \bm{T}_{gt,i} Tgt,i ,其中 i = 1 , ⋅ ⋅ ⋅ , N i= 1,···,N i=1⋅⋅⋅N

1、绝对误差轨迹(Absolute Trajectory Error, ATE) 旋转和平移误差
A T E a l l = 1 N ∑ i = 1 N ∣ ∣ l o g ( T g t , i − 1 T e s t i , i ) ∨ ∣ ∣ 2 2 ATE_{all}=\sqrt{\frac{1}{N}\sum\limits_{i=1}^{N}||log(\bm{T}_{gt,i}^{-1}\bm{T}_{esti,i})^{\vee}||_2^2} ATEall=N1i=1N∣∣log(Tgt,i1Testi,i)22

  • 每个位姿 李代数 的均方根误差 (Root-Mean-Squared Error,RMSE)

2、绝对平移误差(Average Translational Error)

A T E t r a n s = 1 N ∑ i = 1 N ∣ ∣ t r a n s ( T g t , i − 1 T e s t i , i ) ∣ ∣ 2 2 ATE_{trans}=\sqrt{\frac{1}{N}\sum\limits_{i=1}^{N}||trans(\bm{T}_{gt,i}^{-1}\bm{T}_{esti,i})||_2^2} ATEtrans=N1i=1N∣∣trans(Tgt,i1Testi,i)22

其中 trans 表示 取括号内部变量的平移部分。

  • 从整条轨迹上看,旋转出现偏差后,随后的轨迹在平移上也会出现误差。

3、相对误差
考虑 i i i 时刻到 i + Δ t i+\Delta t i+Δt 的运动,相对位姿误差(Relative Pose Error, RPE)

R P E a l l = 1 N − Δ t ∑ i = 1 N − Δ t ∣ ∣ l o g ( ( T g t , i − 1 T g t , i + Δ t ) − 1 ( T e s t i , i − 1 T e s t i , i + Δ t ) ) ∨ ∣ ∣ 2 2 RPE_{all}=\sqrt{\frac{1}{N-\Delta t}\sum\limits_{i=1}^{N-\Delta t}||log((\bm{T}_{gt,i}^{-1}\bm{T}_{gt,i+\Delta t})^{-1}(\bm{T}_{esti,i}^{-1}\bm{T}_{esti,i+\Delta t}))^{\vee}||_2^2} RPEall=NΔt1i=1NΔt∣∣log((Tgt,i1Tgt,i+Δt)1(Testi,i1Testi,i+Δt))22

R P E t r a n s = 1 N − Δ t ∑ i = 1 N − Δ t ∣ ∣ t r a n s ( ( T g t , i − 1 T g t , i + Δ t ) − 1 ( T e s t i , i − 1 T e s t i , i + Δ t ) ) ∣ ∣ 2 2 RPE_{trans}=\sqrt{\frac{1}{N-\Delta t}\sum\limits_{i=1}^{N-\Delta t}||trans((\bm{T}_{gt,i}^{-1}\bm{T}_{gt,i+\Delta t})^{-1}(\bm{T}_{esti,i}^{-1}\bm{T}_{esti,i+\Delta t}))||_2^2} RPEtrans=NΔt1i=1NΔt∣∣trans((Tgt,i1Tgt,i+Δt)1(Testi,i1Testi,i+Δt))22

————————

在这里插入图片描述

mkdir build && cd build
cmake ..
make 
./trajectoryError

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)

project(trajectoryError)


find_package(Sophus REQUIRED)
include_directories( ${Sophus_INCLUDE_DIRS})

option(USE_UBUNTU_20 "Set to ON if you are using Ubuntu 20.04" OFF)
find_package(Pangolin REQUIRED)
if(USE_UBUNTU_20)
    message("You are using Ubuntu 20.04, fmt::fmt will be linked")
    find_package(fmt REQUIRED)
    set(FMT_LIBRARIES fmt::fmt)
endif()
include_directories(${Pangolin_INCLUDE_DIRS})


add_executable(trajectoryError trajectoryError.cpp)
target_link_libraries(trajectoryError ${Sophus_LIBRARIES})
target_link_libraries(trajectoryError ${Pangolin_LIBRARIES} ${FMT_LIBRARIES})

trajectoryError.cpp

#include <iostream>
#include <fstream>
#include <unistd.h>
#include <pangolin/pangolin.h>
#include <sophus/se3.h>

using namespace Sophus;
using namespace std;

string groundtruth_file = "../groundtruth.txt";
string estimated_file = "../estimated.txt";

typedef vector<Sophus::SE3, Eigen::aligned_allocator<Sophus::SE3>> TrajectoryType;

void DrawTrajectory(const TrajectoryType &gt, const TrajectoryType &esti);

TrajectoryType ReadTrajectory(const string &path);

int main(int argc, char **argv) {
  TrajectoryType groundtruth = ReadTrajectory(groundtruth_file);
  TrajectoryType estimated = ReadTrajectory(estimated_file);
  assert(!groundtruth.empty() && !estimated.empty());
  assert(groundtruth.size() == estimated.size());

  // compute rmse
  double rmse = 0;
  for (size_t i = 0; i < estimated.size(); i++) {
    Sophus::SE3 p1 = estimated[i], p2 = groundtruth[i];
    double error = (p2.inverse() * p1).log().norm();
    rmse += error * error;
  }
  rmse = rmse / double(estimated.size());
  rmse = sqrt(rmse);
  cout << "RMSE = " << rmse << endl;

  DrawTrajectory(groundtruth, estimated);
  return 0;
}

TrajectoryType ReadTrajectory(const string &path) {
  ifstream fin(path);
  TrajectoryType trajectory;
  if (!fin) {
    cerr << "trajectory " << path << " not found." << endl;
    return trajectory;
  }

  while (!fin.eof()) {
    double time, tx, ty, tz, qx, qy, qz, qw;
    fin >> time >> tx >> ty >> tz >> qx >> qy >> qz >> qw;
    Sophus::SE3 p1(Eigen::Quaterniond(qw, qx, qy, qz), Eigen::Vector3d(tx, ty, tz));
    trajectory.push_back(p1);
  }
  return trajectory;
}

void DrawTrajectory(const TrajectoryType &gt, const TrajectoryType &esti) {
  // create pangolin window and plot the trajectory
  pangolin::CreateWindowAndBind("Trajectory Viewer", 1024, 768);
  glEnable(GL_DEPTH_TEST);
  glEnable(GL_BLEND);
  glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

  pangolin::OpenGlRenderState s_cam(
      pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),
      pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0)
  );

  pangolin::View &d_cam = pangolin::CreateDisplay()
      .SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f)
      .SetHandler(new pangolin::Handler3D(s_cam));


  while (pangolin::ShouldQuit() == false) {
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

    d_cam.Activate(s_cam);
    glClearColor(1.0f, 1.0f, 1.0f, 1.0f);

    glLineWidth(2);
    for (size_t i = 0; i < gt.size() - 1; i++) {
      glColor3f(0.0f, 0.0f, 1.0f);  // blue for ground truth
      glBegin(GL_LINES);
      auto p1 = gt[i], p2 = gt[i + 1];
      glVertex3d(p1.translation()[0], p1.translation()[1], p1.translation()[2]);
      glVertex3d(p2.translation()[0], p2.translation()[1], p2.translation()[2]);
      glEnd();
    }

    for (size_t i = 0; i < esti.size() - 1; i++) {
      glColor3f(1.0f, 0.0f, 0.0f);  // red for estimated
      glBegin(GL_LINES);
      auto p1 = esti[i], p2 = esti[i + 1];
      glVertex3d(p1.translation()[0], p1.translation()[1], p1.translation()[2]);
      glVertex3d(p2.translation()[0], p2.translation()[1], p2.translation()[2]);
      glEnd();
    }
    pangolin::FinishFrame();
    usleep(5000);   // sleep 5 ms
  }

}

在这里插入图片描述

在这里插入图片描述

4.5 相似变换群 与 李代数

单目视觉 相似变换群Sim(3)
尺度不确定性 与 尺度漂移
对位于空间的点 p \bm{p} p ,在相机坐标系下要经过一个相似变换。
p ′ = [ s R t 0 T 1 ] p = s R p + t \bm{p}^{\prime}=\begin{bmatrix}s\bm{R} & \bm{t}\\ \bm{0}^T& 1 \end{bmatrix}\bm{p} = s\bm{Rp+t} p=[sR0Tt1]p=sRp+t

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
对于尺度因子,李群中的 s s s 即为李代数中 σ \sigma σ 的指数函数

在这里插入图片描述

4.6 小结
李群 SO(3) 和 SE(3) 以及对应的李代数 s o ( 3 ) \mathfrak{so}(3) so(3) s e ( 3 ) \mathfrak{se}(3) se(3)

BCH 线性近似, 对位姿进行扰动并求导

习题

在这里插入图片描述
在这里插入图片描述

题1

验证SO(3)、SE(3)、Sim(3)关于乘法成群

特殊正交群SO(n) 旋转矩阵群
特殊欧式群SE(n) n维欧式变换
相似变换群 Sim(3)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
——————题解:

对于 SO(3):
1、封闭性 ✔
∀ R 1 , R 2 ∈ S O ( 3 ) \forall \bm{R}_1, \bm{R}_2\in SO(3) R1R2SO(3)
R 1 ⋅ R 1 T = I , d e t ( R 1 ) = 1 ; R 2 ⋅ R 2 T = I , d e t ( R 2 ) = 1 \bm{R}_1 ·\bm{R}^T_1=\bm{I},det(\bm{R}_1)=1;\bm{R}_2 · \bm{R}^T_2=\bm{I},det(\bm{R}_2)=1 R1R1T=I,det(R1)=1;R2R2T=I,det(R2)=1

R 1 ⋅ R 2 ⋅ ( R 1 ⋅ R 2 ) T = R 1 ⋅ R 2 ⋅ R 2 T ⋅ R 1 T = R 1 ⋅ I ⋅ R 1 T = I \bm{R}_1 · \bm{R}_2 · (\bm{R}_1 · \bm{R}_2)^T=\bm{R}_1 · \bm{R}_2 · \bm{R}^T_2 · \bm{R}^T_1=\bm{R}_1 · \bm{I}· \bm{R}^T_1=\bm{I} R1R2(R1R2)T=R1R2R2TR1T=R1IR1T=I
d e t ( R 1 ⋅ R 2 ) = d e t ( R 1 ) ⋅ d e t ( R 2 ) = 1 det(\bm{R}_1·\bm{R}_2)=det(\bm{R}_1)·det(\bm{R}_2)=1 det(R1R2)=det(R1)det(R2)=1
2、结合律 ✔
∀ R 1 , R 2 , R 3 ∈ S O ( 3 ) \forall \bm{R}_1, \bm{R}_2, \bm{R}_3\in SO(3) R1R2R3SO(3), 由矩阵结合律可知,满足
( R 1 ⋅ R 2 ) ⋅ R 3 = R 1 ⋅ ( R 2 ⋅ R 3 ) (\bm{R}_1· \bm{R}_2)· \bm{R}_3=\bm{R}_1· (\bm{R}_2· \bm{R}_3) (R1R2R3=R1(R2R3)
3、幺元 ✔ I \bm{I} I
首先 单位矩阵 I \bm{I} I 满足 I ⋅ I T = I , d e t ( I ) = 1 , 因此 I ∈ S O ( 3 ) \bm{I} ·\bm{I}^T=\bm{I},det(\bm{I})=1, 因此\bm{I}\in SO(3) IIT=I,det(I)=1,因此ISO(3)
而对于 ∀ R ∈ S O ( 3 ) \forall \bm{R} \in SO(3) RSO(3), 显然有 I ⋅ R = R ⋅ I = R \bm{I}·\bm{R}=\bm{R}·\bm{I}=\bm{R} IR=RI=R
4、逆 ✔ R T \bm{R}^T RT
对于 ∀ R ∈ S O ( 3 ) \forall \bm{R} \in SO(3) RSO(3), 有 R ⋅ R T = I \bm{R} ·\bm{R}^T=\bm{I} RRT=I
则 显然存在 R − 1 = R T \bm{R}^{-1} = \bm{R}^T R1=RT,且 R T \bm{R}^T RT也是正交阵, 即 R T ∈ S O ( 3 ) \bm{R}^T \in SO(3) RTSO(3)

  • 易证得 R T ⋅ ( R T ) T = R T ⋅ R = I , 且 d e t ( R T ) = d e t ( R ) = 1 \bm{R}^T·(\bm{R}^T)^T=\bm{R}^T·\bm{R}=I,且det(\bm{R}^T)=det(\bm{R})=1 RT(RT)T=RTR=I,det(RT)=det(R)=1

对于 SE(3):
1、封闭性 ✔
∀ T 1 , T 2 ∈ S E ( 3 ) \forall \bm{T}_1, \bm{T}_2\in SE(3) T1T2SE(3)
T 1 ⋅ T 2 = [ R 1 t 1 0 T 1 ] ⋅ [ R 2 t 2 0 T 1 ] = [ R 1 ⋅ R 2 R 1 ⋅ t 2 + t 1 0 T 1 ] \begin{align*}\bm{T}_1·\bm{T}_2&=\begin{bmatrix} \bm{R}_1 & \bm{t}_1 \\ \bm{0}^T & 1 \end{bmatrix}· \begin{bmatrix}\bm{R}_2 & \bm{t}_2 \\ \bm{0}^T & 1\end{bmatrix} \\ &= \begin{bmatrix}\bm{R}_1 ·\bm{R}_2 & \bm{R}_1·\bm{t}_2+\bm{t}_1 \\ \bm{0}^T & 1\end{bmatrix}\\ \end{align*} T1T2=[R10Tt11][R20Tt21]=[R1R20TR1t2+t11]
S O ( 3 ) SO(3) SO(3)中的封闭性证明可知, R 1 ⋅ R 2 ∈ S O ( 3 ) \bm{R}_1·\bm{R}_2\in SO(3) R1R2SO(3),
R 1 ⋅ t 2 + t 1 ∈ R 3 \bm{R}_1·\bm{t}_2+\bm{t}_1\in \mathbb{R}^3 R1t2+t1R3, 则 T 1 ⋅ T 2 ∈ S E ( 3 ) \bm{T}_1·\bm{T}_2\in \mathrm{SE}(3) T1T2SE(3)
2、结合律 ✔
∀ T 1 , T 2 , T 3 ∈ S E ( 3 ) \forall \bm{T}_1, \bm{T}_2, \bm{T}_3\in \mathrm{SE}(3) T1T2T3SE(3),
左边 = ( T 1 ⋅ T 2 ) ⋅ T 3 = ( [ R 1 t 1 0 T 1 ] ⋅ [ R 2 t 2 0 T 1 ] ) ⋅ [ R 3 t 3 0 T 1 ] = [ R 1 ⋅ R 2 R 1 ⋅ t 2 + t 1 0 T 1 ] ⋅ [ R 3 t 3 0 T 1 ] = [ R 1 ⋅ R 2 ⋅ R 3 R 1 ⋅ R 2 ⋅ t 3 + R 1 ⋅ t 2 + t 1 0 T 1 ] \begin{align*}(\bm{T}_1·\bm{T}_2)·\bm{T}_3&=(\begin{bmatrix} \bm{R}_1 & \bm{t}_1 \\ \bm{0}^T & 1 \end{bmatrix}· \begin{bmatrix}\bm{R}_2 & \bm{t}_2 \\ \bm{0}^T & 1\end{bmatrix})· \begin{bmatrix}\bm{R}_3 & \bm{t}_3 \\ \bm{0}^T & 1\end{bmatrix} \\ &= \begin{bmatrix}\bm{R}_1 ·\bm{R}_2 & \bm{R}_1·\bm{t}_2+\bm{t}_1 \\ \bm{0}^T & 1\end{bmatrix} · \begin{bmatrix}\bm{R}_3 & \bm{t}_3 \\ \bm{0}^T & 1\end{bmatrix} \\ &= \begin{bmatrix}\bm{R}_1 ·\bm{R}_2·\bm{R}_3 & \bm{R}_1 ·\bm{R}_2·\bm{t}_3 + \bm{R}_1·\bm{t}_2+\bm{t}_1\\ \bm{0}^T & 1 \end{bmatrix} \end{align*} (T1T2)T3=([R10Tt11][R20Tt21])[R30Tt31]=[R1R20TR1t2+t11][R30Tt31]=[R1R2R30TR1R2t3+R1t2+t11]
右边 = T 1 ⋅ ( T 2 ⋅ T 3 ) = [ R 1 t 1 0 T 1 ] ⋅ ( [ R 2 t 2 0 T 1 ] ⋅ [ R 3 t 3 0 T 1 ] ) = [ R 1 t 1 0 T 1 ] ⋅ [ R 2 ⋅ R 3 R 2 ⋅ t 3 + t 2 0 T 1 ] = [ R 1 ⋅ R 2 ⋅ R 3 R 1 ⋅ R 2 ⋅ t 3 + R 1 ⋅ t 2 + t 1 0 T 1 ] \begin{align*}\bm{T}_1·(\bm{T}_2·\bm{T}_3)&=\begin{bmatrix} \bm{R}_1 & \bm{t}_1 \\ \bm{0}^T & 1 \end{bmatrix}· (\begin{bmatrix}\bm{R}_2 & \bm{t}_2 \\ \bm{0}^T & 1\end{bmatrix}· \begin{bmatrix}\bm{R}_3 & \bm{t}_3 \\ \bm{0}^T & 1\end{bmatrix} ) \\ &= \begin{bmatrix} \bm{R}_1 & \bm{t}_1 \\ \bm{0}^T & 1 \end{bmatrix}·\begin{bmatrix}\bm{R}_2 ·\bm{R}_3 & \bm{R}_2·\bm{t}_3+\bm{t}_2 \\ \bm{0}^T & 1\end{bmatrix}\\ &= \begin{bmatrix}\bm{R}_1 ·\bm{R}_2·\bm{R}_3 & \bm{R}_1 ·\bm{R}_2·\bm{t}_3 + \bm{R}_1·\bm{t}_2+\bm{t}_1\\ \bm{0}^T & 1 \end{bmatrix} \end{align*} T1(T2T3)=[R10Tt11]([R20Tt21][R30Tt31])=[R10Tt11][R2R30TR2t3+t21]=[R1R2R30TR1R2t3+R1t2+t11]
左边 = 右边, 即 ( T 1 ⋅ T 2 ) ⋅ T 3 = T 1 ⋅ ( T 2 ⋅ T 3 ) (\bm{T}_1·\bm{T}_2)·\bm{T}_3=\bm{T}_1·(\bm{T}_2·\bm{T}_3) (T1T2)T3=T1(T2T3)。证毕。
3、幺元 ✔ I \bm{I} I
类似的,对于 ∀ T ∈ S E ( 3 ) \forall \bm{T} \in \mathrm{SE}(3) TSE(3), 显然有 I ⋅ T = T ⋅ I = T \bm{I}·\bm{T}=\bm{T}·\bm{I}=\bm{T} IT=TI=T
4、逆
T − 1 = [ R − 1 − R − 1 t 0 T 1 ] \bm{T}^{-1}= \begin{bmatrix}\bm{R}^{-1} &-\bm{R}^{-1}\bm{t}\\ \bm{0}^T & 1\end{bmatrix} T1=[R10TR1t1],由 SO(3)中的相关证明, R − 1 ∈ S O ( 3 ) ,同时 − R − 1 t ∈ R 3 \bm{R}^{-1}\in \mathrm{SO}(3),同时-\bm{R}^{-1}\bm{t}\in \mathbb{R}^3 R1SO(3),同时R1tR3。证毕

在这里插入图片描述

对于 Sim(3):
1、封闭性 ✔
∀ S 1 , S 2 ∈ S i m ( 3 ) \forall \bm{S}_1, \bm{S}_2\in \mathrm{Sim}(3) S1S2Sim(3)
T 1 ⋅ T 2 = [ s R 1 t 1 0 T 1 ] ⋅ [ s R 2 t 2 0 T 1 ] = [ s 2 R 1 ⋅ R 2 s R 1 ⋅ t 2 + t 1 0 T 1 ] \begin{align*}\bm{T}_1·\bm{T}_2&=\begin{bmatrix} s\bm{R}_1 & \bm{t}_1 \\ \bm{0}^T & 1 \end{bmatrix}· \begin{bmatrix}s\bm{R}_2 & \bm{t}_2 \\ \bm{0}^T & 1\end{bmatrix} \\ &= \begin{bmatrix}s^2\bm{R}_1 ·\bm{R}_2 & s\bm{R}_1·\bm{t}_2+\bm{t}_1 \\ \bm{0}^T & 1\end{bmatrix}\\\end{align*} T1T2=[sR10Tt11][sR20Tt21]=[s2R1R20TsR1t2+t11]
易证 T 1 ⋅ T 2 ∈ R 4 × 4 \bm{T}_1·\bm{T}_2 \in \mathbb{R}^{4\times4} T1T2R4×4

题2

在这里插入图片描述

题4

在这里插入图片描述

√ 题5

在这里插入图片描述
证明:
原式等效于证明 R p ∧ R T R = ( R p ) ∧ R R p ∧ I = ( R p ) ∧ R R p ∧ = ( R p ) ∧ R 对于向量 v ∈ R 3 R p ∧ v = ( R p ) ∧ R v 上式等号左边 表示向量 p , v 叉乘后所得向量根据 R 旋转。 等号右边表示 向量 p , v 分别根据 R 旋转后叉乘,显然得到同一个向量。 证毕。 \begin{align*} 原式等效于证明\\ \bm{Rp^{\land}R^TR} & = \bm{(Rp)}^{\land}\bm{R} \\ \bm{Rp^{\land}\bm{I}} & = \bm{(Rp)}^{\land}\bm{R} \\ \bm{Rp^{\land}} & = \bm{(Rp)}^{\land}\bm{R} \\ 对于向量 \bm{v} \in \mathbb{R}^3\\ \bm{Rp^{\land}}\bm{v} & = \bm{(Rp)}^{\land}\bm{R}\bm{v} \\ 上式等号左边& 表示向量\bm{p,v}叉乘后所得向量根据 \bm{R}旋转。\\ 等号右边表示& 向量\bm{p,v}分别根据 \bm{R}旋转后叉乘,显然得到同一个向量。\\ 证毕。 \end{align*} 原式等效于证明RpRTRRpIRp对于向量vR3Rpv上式等号左边等号右边表示证毕。=(Rp)R=(Rp)R=(Rp)R=(Rp)Rv表示向量p,v叉乘后所得向量根据R旋转。向量p,v分别根据R旋转后叉乘,显然得到同一个向量。

√ 题6

在这里插入图片描述
根据题 5 的结论 : ( R p ) ∧ = R p ∧ R T exp ⁡ ( ( R p ) ∧ ) = exp ⁡ ( R p ∧ R T ) 级数展开 = ∑ n = 0 ∞ ( R p ∧ R T ) n N ! = ∑ n = 0 ∞ R p ∧ R T ⋅ R p ∧ R T ⋅ , ⋅ ⋅ ⋅ , ⋅ R p ∧ R T ⋅ R p ∧ R T N ! 其中 R T R = I = ∑ n = 0 ∞ R ( p ∧ ) n R T N ! = R ∑ n = 0 ∞ ( p ∧ ) n N ! R T = R exp ⁡ ( p ∧ ) R T \begin{align*}根据题5 的结论&:\bm{(Rp)}^{\land} = \bm{Rp^{\land}R^T} \\ \exp((\bm{Rp})^{\land})& = \exp(\bm{Rp^{\land}R^T}) \\ 级数展开\\ &= \sum\limits_{n=0}^{\infty}\frac{(\bm{Rp^{\land}R^T}) ^n}{N!} \\ &= \sum\limits_{n=0}^{\infty}\frac{\bm{Rp^{\land}R^T}·\bm{Rp^{\land}R^T}·,···,·\bm{Rp^{\land}R^T}·\bm{Rp^{\land}R^T}}{N!} \\ 其中 \bm{R^TR=I}\\ & = \sum\limits_{n=0}^{\infty}\frac{\bm{R(p^{\land})^nR^T}}{{N!} }\\ & = \bm{R} \sum\limits_{n=0}^{\infty}\frac{\bm{(p^{\land})^n}}{{N!} } \bm{R}^T \\ & = \bm{R}\exp(\bm{p}^{\land})\bm{R}^T \end{align*} 根据题5的结论exp((Rp))级数展开其中RTR=I(Rp)=RpRT=exp(RpRT)=n=0N!(RpRT)n=n=0N!RpRTRpRT⋅⋅⋅RpRTRpRT=n=0N!R(p)nRT=Rn=0N!(p)nRT=Rexp(p)RT

证毕。
——————

6.2 SE(3)伴随性质

T exp ⁡ ( ξ ∧ ) T − 1 = T ∑ n = 0 ∞ ( ξ ∧ ) n n ! T − 1 由于 T − 1 T = I = ∑ n = 0 ∞ T ξ ∧ T − 1 ⋅ T ξ ∧ T − 1 ⋅ T ξ ∧ T − 1 ⋅ T ξ ∧ T − 1 ⋅ , ⋅ ⋅ ⋅ , T ξ ∧ T − 1 ⋅ T ξ ∧ T − 1 n ! = ∑ n = 0 ∞ ( T ξ ∧ T − 1 ) n n ! = exp ⁡ ( T ξ ∧ T − 1 ) \begin{align*} \bm{T}\exp(\bm{\xi}^{\land})\bm{T}^{-1} &= \bm{T}\sum\limits_{n=0}^{\infty}\frac{(\bm{\xi}^{\land})^n}{n!}\bm{T}^{-1} \\ 由于 \bm{T^{-1}T=I} \\ & = \sum\limits_{n=0}^{\infty}\frac{\bm{T}\bm{\xi}^{\land}\bm{T}^{-1}·\bm{T}\bm{\xi}^{\land}\bm{T}^{-1}·\bm{T}\bm{\xi}^{\land}\bm{T}^{-1}·\bm{T}\bm{\xi}^{\land}\bm{T}^{-1}·,···, \bm{T}\bm{\xi}^{\land}\bm{T}^{-1}·\bm{T}\bm{\xi}^{\land}\bm{T}^{-1}}{n!} \\ & = \sum\limits_{n=0}^{\infty}\frac{(\bm{T}\bm{\xi}^{\land}\bm{T}^{-1})^n}{n!} \\ &= \exp(\bm{T}\bm{\xi}^{\land}\bm{T}^{-1}) \\ \end{align*} Texp(ξ)T1由于T1T=I=Tn=0n!(ξ)nT1=n=0n!TξT1TξT1TξT1TξT1⋅,⋅⋅⋅,TξT1TξT1=n=0n!(TξT1)n=exp(TξT1)

ξ = [ ρ ϕ ] , ξ ∧ = [ ϕ ∧ ρ 0 T 0 ] , T = [ R t 0 T 1 ] , T − 1 = [ R T − R T t 0 T 1 ] \bm{\xi=}\begin{bmatrix}\bm{\rho}\\ \bm{\phi} \end{bmatrix},\bm{\xi}^{\land}=\begin{bmatrix}\bm{\phi}^{\land} & \bm{\rho} \\ \bm{0}^T & 0 \end{bmatrix},\bm{T}=\begin{bmatrix}\bm{R} & \bm{t}\\ \bm{0}^T & 1 \end{bmatrix},\bm{T}^{-1}=\begin{bmatrix}\bm{R}^T & -\bm{R}^T\bm{t}\\ \bm{0}^T & 1 \end{bmatrix} ξ=[ρϕ]ξ=[ϕ0Tρ0]T=[R0Tt1]T1=[RT0TRTt1]

在这里插入图片描述

则:
T ξ ∧ T − 1 = [ R t 0 T 1 ] [ ϕ ∧ ρ 0 T 0 ] [ R T − R T t 0 T 1 ] = [ R ϕ ∧ R ρ 0 T 0 ] [ R T − R T t 0 T 1 ] = [ R ϕ ∧ R T − R ϕ ∧ R T t + R ρ 0 T 0 ] 由题 5 的结论 R p ∧ R T = ( R p ) ∧ = [ ( R ϕ ) ∧ − ( R ϕ ) ∧ t + R ρ 0 T 0 ] 对比 ξ , ξ ∧ 进行转换 = [ − ( R ϕ ) ∧ t + R ρ R ϕ ] ∧ 由叉乘性质, = [ t ∧ R ϕ + R ρ R ϕ ] ∧ = ( [ R t ∧ R 0 R ] [ ρ ϕ ] ) ∧ = ( A d ( T ) ξ ) ∧ \begin{align*}\bm{T}\bm{\xi}^{\land}\bm{T}^{-1}&= \begin{bmatrix}\bm{R} & \bm{t}\\ \bm{0}^T & 1 \end{bmatrix}\begin{bmatrix}\bm{\phi}^{\land} & \bm{\rho} \\ \bm{0}^T & 0 \end{bmatrix}\begin{bmatrix}\bm{R}^T & -\bm{R}^T\bm{t}\\ \bm{0}^T & 1 \end{bmatrix}\\ &= \begin{bmatrix}\bm{R}\bm{\phi}^{\land} & \bm{R\rho}\\ \bm{0}^T & 0 \end{bmatrix}\begin{bmatrix}\bm{R}^T & -\bm{R}^T\bm{t}\\ \bm{0}^T & 1 \end{bmatrix}\\ &= \begin{bmatrix}\bm{R}\bm{\phi}^{\land}\bm{R}^T & -\bm{R}\bm{\phi}^{\land}\bm{R}^T\bm{t + \bm{R\rho}}\\ \bm{0}^T & 0 \end{bmatrix} \\ 由题5的结论& \bm{Rp^{\land}R^T} = \bm{(Rp)}^{\land} \\ &= \begin{bmatrix}(\bm{R}\bm{\phi})^{\land} & -(\bm{R}\bm{\phi})^{\land}\bm{t + \bm{R\rho}}\\ \bm{0}^T &0 \end{bmatrix}\\ & 对比 \bm{\xi, {\xi}^{\land}}进行转换\\ &= \begin{bmatrix}-(\bm{R}\bm{\phi})^{\land}\bm{t + \bm{R\rho}}\\ \bm{R}\bm{\phi} \end{bmatrix}^{\land}\\ 由叉乘性质, \\ &= \begin{bmatrix}\bm{t}^{\land}\bm{R}\bm{\phi}+ \bm{R\rho}\\ \bm{R}\bm{\phi} \end{bmatrix}^{\land}\\ &=( \begin{bmatrix}\bm{R}& \bm{t}^{\land}\bm{R} \\ \bm{0} & \bm{R} \end{bmatrix}\begin{bmatrix}\bm{\rho}\\ \bm{\phi} \end{bmatrix})^{\land}\\ & = (Ad(\bm{T})\bm{\xi})^{\land} \end{align*} TξT1由题5的结论由叉乘性质,=[R0Tt1][ϕ0Tρ0][RT0TRTt1]=[Rϕ0T0][RT0TRTt1]=[RϕRT0TRϕRTt+0]RpRT=(Rp)=[(Rϕ)0T(Rϕ)t+0]对比ξ,ξ进行转换=[(Rϕ)t+Rϕ]=[tRϕ+Rϕ]=([R0tRR][ρϕ])=(Ad(T)ξ)

综上:
T exp ⁡ ( ξ ∧ ) T − 1 = exp ⁡ ( ( A d ( T ) ξ ) ∧ ) \bm{T}\exp(\bm{\xi}^{\land})\bm{T}^{-1}=\exp((Ad(\bm{T})\bm{\xi})^{\land}) Texp(ξ)T1=exp((Ad(T)ξ))
其中
A d ( T ) = [ R t ∧ R 0 R ] Ad(\bm{T})=\begin{bmatrix}\bm{R}& \bm{t}^{\land}\bm{R} \\ \bm{0} & \bm{R} \end{bmatrix} Ad(T)=[R0tRR]

证毕
————————————————

√ 题7

在这里插入图片描述
在这里插入图片描述
SO(3):
设右扰动 Δ R Δ\bm{R} ΔR 对应的李代数 为 φ \bm{\varphi} φ

∂ ( R p ) ∂ φ = lim ⁡ φ → 0 exp ⁡ ( ϕ ∧ ) exp ⁡ ( φ ∧ ) p − exp ⁡ ( ϕ ∧ ) p φ = lim ⁡ φ → 0 exp ⁡ ( ϕ ∧ ) ( I + φ ∧ ) p − exp ⁡ ( ϕ ∧ ) p φ = lim ⁡ φ → 0 exp ⁡ ( ϕ ∧ ) φ ∧ p φ = lim ⁡ φ → 0 R φ ∧ p φ 由题 5 : R p ∧ = ( R p ) ∧ R = lim ⁡ φ → 0 ( R φ ) ∧ R p φ 由叉乘性质 = lim ⁡ φ → 0 − ( R p ) ∧ R φ φ = − ( R p ) ∧ R \begin{align*}\frac{\partial(\bm{Rp})}{\partial\bm{\varphi}} &= \lim\limits_{\bm{\varphi}\to0}\frac{\exp(\bm{\phi}^{\land})\exp(\bm{\varphi}^{\land})\bm{p}-\exp(\bm{\phi}^{\land})\bm{p}}{\bm{\varphi}}\\ &= \lim\limits_{\bm{\varphi}\to0}\frac{\exp(\bm{\phi}^{\land})(\bm{I} + \bm{\varphi}^{\land})\bm{p}-\exp(\bm{\phi}^{\land})\bm{p}}{\bm{\varphi}}\\ &= \lim\limits_{\bm{\varphi}\to0}\frac{\exp(\bm{\phi}^{\land})\bm{\varphi}^{\land}\bm{p}}{\bm{\varphi}}\\ &= \lim\limits_{\bm{\varphi}\to0}\frac{\bm{R}\bm{\varphi}^{\land}\bm{p}}{\bm{\varphi}}\\ 由题5 : \bm{Rp^{\land}} & = \bm{(Rp)}^{\land}\bm{R} \\ &= \lim\limits_{\bm{\varphi}\to0}\frac{(\bm{R}\bm{\varphi})^{\land}\bm{Rp}}{\bm{\varphi}}\\ 由叉乘性质\\ &= \lim\limits_{\bm{\varphi}\to0}\frac{-(\bm{Rp})^{\land}\bm{R}\bm{\varphi}}{\bm{\varphi}}\\ & = -(\bm{Rp})^{\land}\bm{R} \end{align*} φ(Rp)由题5:Rp由叉乘性质=φ0limφexp(ϕ)exp(φ)pexp(ϕ)p=φ0limφexp(ϕ)(I+φ)pexp(ϕ)p=φ0limφexp(ϕ)φp=φ0limφRφp=(Rp)R=φ0limφ(Rφ)Rp=φ0limφ(Rp)Rφ=(Rp)R

SE(3):

假设某空间点 p \bm{p} p 经过一次变换 T \bm{T} T (对应李代数为 ξ \bm{\xi} ξ), 得到 T p \bm{Tp} Tp
现在给 T \bm{T} T 右乘一个扰动 Δ T = exp ⁡ ( Δ ξ ∧ ) Δ\bm{T} = \exp(Δ\bm{\xi}^{\land}) ΔT=exp(Δξ)
设扰动项的李代数为 Δ ξ = [ Δ ρ , Δ ϕ ] T Δ\bm{\xi}=[Δ\bm{\rho},Δ\bm{\phi}]^T Δξ=[Δρ,Δϕ]T,则
在这里插入图片描述

∂ ( T p ) ∂ Δ ξ = lim ⁡ Δ ξ → 0 exp ⁡ ( ξ ∧ ) exp ⁡ ( Δ ξ ∧ ) p − exp ⁡ ( ξ ∧ ) p Δ ξ = lim ⁡ Δ ξ → 0 exp ⁡ ( ξ ∧ ) ( I + Δ ξ ∧ ) p − exp ⁡ ( ξ ∧ ) p Δ ξ = lim ⁡ Δ ξ → 0 exp ⁡ ( ξ ∧ ) Δ ξ ∧ p Δ ξ = lim ⁡ Δ ξ → 0 [ R t 0 1 ] [ Δ ϕ ∧ Δ ρ 0 T 0 ] p Δ ξ 把 p 前的 矩阵当做旋转矩阵,结合向量旋转的性质, = lim ⁡ Δ ξ → 0 [ R t 0 1 ] [ Δ ϕ ∧ p + Δ ρ 0 ] Δ ξ = lim ⁡ Δ ξ → 0 [ R Δ ϕ ∧ p + R Δ ρ 0 T ] [ Δ ρ , Δ ϕ ] T 将 Δ ρ , Δ ϕ 提出来,方便求导 根据 R p ∧ = ( R p ) ∧ R = lim ⁡ Δ ξ → 0 [ ( R Δ ϕ ) ∧ R p + R Δ ρ 0 T ] [ Δ ρ , Δ ϕ ] T = lim ⁡ Δ ξ → 0 [ − ( R p ) ∧ R Δ ϕ + R Δ ρ 0 T ] [ Δ ρ , Δ ϕ ] T = [ R − ( R p ) ∧ R 0 T 0 T ] \begin{align*}\frac{\partial(\bm{Tp})}{\partial{Δ\bm{\xi}}} &= \lim\limits_{Δ\bm{\xi}\to0}\frac{\exp(\bm{\xi}^{\land})\exp(Δ\bm{\xi}^{\land})\bm{p}-\exp(\bm{\xi}^{\land})\bm{p}}{Δ\bm{\xi}} \\ &= \lim\limits_{Δ\bm{\xi}\to0}\frac{\exp(\bm{\xi}^{\land})(\bm{I} +Δ\bm{\xi}^{\land})\bm{p}-\exp(\bm{\xi}^{\land})\bm{p}}{Δ\bm{\xi}} \\ &= \lim\limits_{Δ\bm{\xi}\to0}\frac{\exp(\bm{\xi}^{\land})Δ\bm{\xi}^{\land}\bm{p}}{Δ\bm{\xi}} \\ &=\lim\limits_{Δ\bm{\xi}\to0} \frac{\begin{bmatrix} \bm{R} & \bm{t}\\ 0 & 1 \end{bmatrix}\begin{bmatrix} Δ\bm{\phi}^{\land} & \Delta\bm{\rho}\\ \bm{0}^T & 0 \end{bmatrix}\bm{p}}{Δ\bm{\xi}}\\ 把\bm{p}前的&矩阵当做旋转矩阵,结合向量旋转的性质,\\ &=\lim\limits_{Δ\bm{\xi}\to0} \frac{\begin{bmatrix} \bm{R} & \bm{t}\\ 0 & 1 \end{bmatrix}\begin{bmatrix} Δ\bm{\phi}^{\land}\bm{p} + \Delta\bm{\rho}\\ 0 \end{bmatrix}}{Δ\bm{\xi}}\\ &=\lim\limits_{Δ\bm{\xi}\to0} \frac{\begin{bmatrix} \bm{R}\Delta\bm{\phi}^{\land}\bm{p}+ \bm{R}\Delta\bm{\rho}\\ \bm{0}^T \end{bmatrix}}{[Δ\bm{\rho},Δ\bm{\phi}]^T} \\ 将&Δ\bm{\rho},Δ\bm{\phi} 提出来,方便求导\\ & 根据 \bm{Rp^{\land}} = \bm{(Rp)}^{\land}\bm{R} \\ &=\lim\limits_{Δ\bm{\xi}\to0} \frac{\begin{bmatrix} (\bm{R}\Delta\bm{\phi})^{\land}\bm{R}\bm{p}+\bm{R}\Delta\bm{\rho}\\ \bm{0}^T \end{bmatrix}}{[Δ\bm{\rho},Δ\bm{\phi}]^T} \\ &=\lim\limits_{Δ\bm{\xi}\to0} \frac{\begin{bmatrix} -(\bm{R}\bm{p})^{\land}\bm{R}\Delta\bm{\phi}+ \bm{R}\Delta\bm{\rho}\\ \bm{0}^T \end{bmatrix}}{[Δ\bm{\rho},Δ\bm{\phi}]^T} \\ & = \begin{bmatrix} \bm{R} & -(\bm{R}\bm{p})^{\land}\bm{R} \\ \bm{0}^T & \bm{0}^T \end{bmatrix} \\ \end{align*} Δξ(Tp)p前的=Δξ0limΔξexp(ξ)exp(Δξ)pexp(ξ)p=Δξ0limΔξexp(ξ)(I+Δξ)pexp(ξ)p=Δξ0limΔξexp(ξ)Δξp=Δξ0limΔξ[R0t1][Δϕ0TΔρ0]p矩阵当做旋转矩阵,结合向量旋转的性质,=Δξ0limΔξ[R0t1][Δϕp+Δρ0]=Δξ0lim[Δρ,Δϕ]T[RΔϕp+RΔρ0T]Δρ,Δϕ提出来,方便求导根据Rp=(Rp)R=Δξ0lim[Δρ,Δϕ]T[(RΔϕ)Rp+RΔρ0T]=Δξ0lim[Δρ,Δϕ]T[(Rp)RΔϕ+RΔρ0T]=[R0T(Rp)R0T]
在这里插入图片描述
——————————————

√ 题8

cmake的 find_package指令:

官方文档

find_package(包名 版本 REQUIRED)

不同建图功能包要求的依赖包和最新版本可能不同,为了减少后续的麻烦(如新版本包的语法和旧版本的语法已经不一样,这样可能需要改很多地方的代码), 这时就需要同一包的不同版本在同一系统共存。这时一般要做两步。
1、安装所需版本的包,注意在 cmake 时指定安装路径
在这里插入图片描述
2、调包时
在这里插入图片描述

一些包需要 sudo make install后才能被找到

在这里插入图片描述
在这里插入图片描述
参考链接

在这里插入图片描述

LaTex

在这里插入图片描述

$\mathfrak{g}$

g \mathfrak{g} g

$\mathbb{R}$

R \mathbb{R} R

$\times$

× \times ×

$\varphi$

φ \varphi φ

$\Phi$

Φ \Phi Φ

在这里插入图片描述

$\overset{\mathrm{def}}{=}$
$\xlongequal{def}$

= d e f \overset{\mathrm{def}}{=} =def
= d e f \xlongequal{def} def

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值