(完全背包型动态规划)lintcode440 · 背包问题 III

题目

描述
给定 n 种物品, 每种物品都有无限个. 第 i 个物品的体积为 A[i], 价值为 V[i].
再给定一个容量为 m 的背包. 问可以装入背包的最大价值是多少?

1.不能将一个物品分成小块.
2.放入背包的物品的总大小不能超过 m.

样例

样例 1:
输入: A = [2, 3, 5, 7], V = [1, 5, 2, 4], m = 10
输出: 15
解释: 装入三个物品 1 (A[1] = 3, V[1] = 5), 总价值 15.

样例 2:
输入: A = [1, 2, 3], V = [1, 2, 3], m = 5
输出: 5
解释: 策略不唯一. 比如, 装入五个物品 0 (A[0] = 1, V[0] = 1).

分析

1.算法选择

题目可以装入的物品数量不限,求可以装入背包的最大价值,典型的完全背包问题,第一步想到的是动态规划,然后就是贪心,这种题用动态规划肯定是没问题。
反观一下贪心,贪心准则肯定是性价比高的优先,但是这道题中物品是不可分割的,反例:A=[3,5],V=[3,4],m=11;利用贪心准则重量为3的物品性价比是最高的,所以都装入3最大价值为9,但是这道题正确的做法是2个3,1个5最大价值为10
如果非要用贪心的话,贪心准则将会非常复杂,准则是价值,重量,性价比都有反例,所以这里我们选择用动态规划

2.确定最后一步

f[i],[j]代表着选i种物品时凑齐j重量的最大价值,最后一步是是否拿A[i],那就要比较f[i-1],[j]和f[i],[j-A[i]]的大小。

如果看了上一篇背包问题二这里就看出了不同之处,上一个是跟f[i-1],[j-A[i]]比较,只有这一处不一样,这里是怎么思考的呢,背包二中的每个物品只有一个,所以拿这个物品要从前一行来算,而背包三物品有无限多个,从当前行算的意思就是说可以拿多个这个物品

3.转移方程

f[i],[j]=max(f[i-1],[j] f[i],[j-A[i]]+V[i]),这里的条件是j>=A[i] 当前背包的承重不小于当前物品的重量&&当前比较的这个状态是可以拼出来的

代码部分

1.初始化

背包的承重m当作列,物品的种类n当作行,并且初始化第一行,就是当物品种类为0时对应的价值,f[0],[0]=0因为这时需要装满0的重量所以什么都不用做,价值为0,往后就是(0,1),(0,2),(0,3)…(0,m)物品种类为0时任何大于0的重量都是凑不出来的,凑不出来这里我们标记成-1

        int len=A.size();
        
        vector<vector<int> > f(len+1,vector<int>(m+1));
        
        f[0][0]=0;			//初始化第一行
		for(int i=1;i<m+1;i++)
			f[0][i]=-1;		//0种物品承重大于0时肯定拼不出来
2.动规核心

这里我初始化了一个变量来记录最大值,不然到最后还要再创建一个循环来找出最大值

		int maxval=0;
		for(int i=1;i<len+1;i++)		//动规核心 
		{
			for(int j=0;j<m+1;++j)
			{
				f[i][j]=f[i-1][j];
				if(j>=A[i-1]&&f[i][j-A[i-1]]!=-1)
					f[i][j]=max(f[i][j],f[i][j-A[i-1]]+V[i-1]);
				maxval=max(maxval,f[i][j]);
			}
		}

完整代码

class Solution {
public:

    int backPackIII(vector<int> &A, vector<int> &V, int m) {
        int len=A.size();
        
        vector<vector<int> > f(len+1,vector<int>(m+1));
        
        f[0][0]=0;			//初始化第一行
		for(int i=1;i<m+1;i++)
			f[0][i]=-1;		//0种物品承重大于0时肯定拼不出来
			
		int maxval=0;
		for(int i=1;i<len+1;i++)		//动规核心 
		{
			for(int j=0;j<m+1;++j)
			{
				f[i][j]=f[i-1][j];
				if(j>=A[i-1]&&f[i][j-A[i-1]]!=-1)
					f[i][j]=max(f[i][j],f[i][j-A[i-1]]+V[i-1]);
				maxval=max(maxval,f[i][j]);
			}
		}
		
		return maxval;
    }
};

总结:

这种背包问题可以做内存优化,利用滚动数组空间,因为每一行都依赖上一行所以创建一个两行的数组就够了,极致的压缩空间可以使用一维数组。但是发现不管是什么样的背包问题,背包的承重一定是要带入状态中的。
个人感觉在动态规划中,背包问题属于相对简单的类型

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

White boy&

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值