题目
字典 wordList 中从单词 beginWord 和 endWord 的 转换序列 是一个按下述规格形成的序列 beginWord -> s1 -> s2 -> … -> sk:
每一对相邻的单词只差一个字母。
对于 1 <= i <= k 时,每个 si 都在 wordList 中。注意, beginWord 不需要在 wordList 中。
sk == endWord
给你两个单词 beginWord 和 endWord 和一个字典 wordList ,返回 从 beginWord 到 endWord 的 最短转换序列 中的 单词数目 。如果不存在这样的转换序列,返回 0 。
示例 1:
输入:beginWord = “hit”, endWord = “cog”, wordList = [“hot”,“dot”,“dog”,“lot”,“log”,“cog”]
输出:5
解释:一个最短转换序列是 “hit” -> “hot” -> “dot” -> “dog” -> “cog”, 返回它的长度 5。
示例 2:
输入:beginWord = “hit”, endWord = “cog”, wordList = [“hot”,“dot”,“dog”,“lot”,“log”]
输出:0
解释:endWord “cog” 不在字典中,所以无法进行转换。
提示:
1 <= beginWord.length <= 10
endWord.length == beginWord.length
1 <= wordList.length <= 5000
wordList[i].length == beginWord.length
beginWord、endWord 和 wordList[i] 由小写英文字母组成
beginWord != endWord
wordList 中的所有字符串 互不相同
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/word-ladder
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
分析
题目中限定,进行单词转换需要这两个单词相差一个字母,如果有多个单词的时候我们应该转换成哪个单词,从而到达目标的次数最小呢,这时我们就可以遍历可以转换的单词,然后再遍历转换后的单词是否存在目标单词,如果不存在,就继续遍历当前单词能转换的单词,直到找到目标或者遍历结束,到这里就可以确定这是一道bfs的题
首先应该确定单词之间的关系,每个单词可以直接转换成哪些单词,这些单词都应该跟这个单词绑定存储起来(邻接表)
然后在邻接表中bfs,找到目标时既是答案次数
代码部分
1.构建和初始化邻接表
我们要将一个字符串和它能直接转换的字符串绑定,所以这里就用到了map和pair,pair用来绑定当前字符串和字符串数组
map<string,vector<string> > graph; //邻接表
wordList.push_back(beginWord);
for(int i=0;i<wordList.size();i++) //初始化
{
graph[wordList[i]]=vector<string>();
}
for(int i=0;i<wordList.size();i++) //构建邻接表
{
for(int j=i+1;j<wordList.size();j++)
{
if(check(wordList[i],wordList[j]))
{
graph[wordList[i]].push_back(wordList[j]);
graph[wordList[j]].push_back(wordList[i]);
}
}
}
2.bfs部分
我们要做的事情就是遍历每一层直到找到答案或者全部遍历完,bfs要用到队列,队列中的每个元素的组成应该是什么呢,首先是当前的字符串,然后是当前的的步数我们要记下来(答案需要),所以这里我们的队列的每个元素是pair<string,int>
然后需要一个数组来储存我们走过的字符串,避免死循环,这里我们用set来存储走过的字符串
每次都pop掉队首的元素,赋值给当前要处理的字符串,然后再将跟它相连的所有字符串push进来,并且标记为已经走过,每次pop时判断当前的字符串是否为目标字符串,如果是就直接返回,然后再循环结束的地方返回0,这里说明没有找到目标字符串,说明目标字符串不在字符串数组中,或者没有字符串可以直接转换成目标字符串
int bfs(string beginWord, string endWord,
vector<string>& wordList,map<string,vector<string> > &graph)
{
//出口
//现在能做的事情
queue<pair<string,int> > Q; //搜索队列 顶点,步数
Q.push(make_pair(beginWord,1));
set<string> vis; //记录走过单词
vis.insert(beginWord);
while(!Q.empty())
{
string node=Q.front().first; //顶点
int step=Q.front().second; //步数
Q.pop();
if(node==endWord)
return step;
const vector<string> neighbors=graph[node];
for(int i=0;i<graph[node].size();i++)
{
if(vis.find(neighbors[i])==vis.end())
{
vis.insert(neighbors[i]);
Q.push(make_pair(neighbors[i],step+1));
}
}
}
return 0;
}
完整代码
#include <bits/stdc++.h>
using namespace std;
class Solution {
public:
bool check(string s1,string s2)
{
int cnt=0;
for(int i=0;i<s1.size();i++)
if(s1[i]!=s2[i])
cnt++;
return cnt==1;
}
int bfs(string beginWord, string endWord,
vector<string>& wordList,map<string,vector<string> > &graph)
{
//出口
//现在能做的事情
queue<pair<string,int> > Q; //搜索队列 顶点,步数
Q.push(make_pair(beginWord,1));
set<string> vis; //记录走过单词
vis.insert(beginWord);
while(!Q.empty())
{
string node=Q.front().first; //顶点
int step=Q.front().second; //步数
Q.pop();
if(node==endWord)
return step;
const vector<string> neighbors=graph[node];
for(int i=0;i<graph[node].size();i++)
{
if(vis.find(neighbors[i])==vis.end())
{
vis.insert(neighbors[i]);
Q.push(make_pair(neighbors[i],step+1));
}
}
}
return 0;
}
int ladderLength(string beginWord, string endWord,
vector<string>& wordList) {
map<string,vector<string> > graph; //邻接表
wordList.push_back(beginWord);
for(int i=0;i<wordList.size();i++) //初始化
{
graph[wordList[i]]=vector<string>();
}
for(int i=0;i<wordList.size();i++) //构建邻接表
{
for(int j=i+1;j<wordList.size();j++)
{
if(check(wordList[i],wordList[j]))
{
graph[wordList[i]].push_back(wordList[j]);
graph[wordList[j]].push_back(wordList[i]);
}
}
}
/*
//输出构造好的邻接表
for(int i=0;i<wordList.size();i++)
{
cout<<wordList[i]<<": ";
const vector<string> neighbors=graph[wordList[i]];
for(int j=0;j<neighbors.size();j++)
{
cout<<neighbors[j]<<" ";
}
cout<<endl;
}
*/
int ans=bfs(beginWord,endWord,wordList,graph);
return ans;
}
};
int main (void)
{
string beginWord = "hit", endWord = "cog";
vector<string> wordList={"hot","dot","dog","lot","log","cog"};
Solution s;
cout<<s.ladderLength(beginWord,endWord,wordList);
return 0;
}
总结
遇到搜索的题,一定要先判断用哪种方式更合适,bfs或dfs或者加记忆化的dfs,这道题用bfs就显然更合适,按层遍历返回先找到的哪个目标字符串一定是步数最少的,刚开始我用了记忆化的bfs也只过了一半的用例