龙贝格方法计算椭圆周长

本文介绍了如何运用龙贝格积分法(Romberg's method)来计算椭圆的周长。通过椭圆的参数方程,将周长表示为一个定积分,并给出Matlab代码实现。示例中,针对a=20,b=10的椭圆,设置精度要求为1e-4,展示了具体计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

龙贝格方法计算椭圆周长

椭圆周长定积分公式

由于椭圆的周长可以看作是很多 Δ x \Delta x Δx Δ y \Delta y Δy直角边构成的斜边的和。因此就是 d x 2 + d y 2 \sqrt{dx^2+dy^2} dx2+dy2 ,此处为了简化直接用参数方程替换,就是 4 × ∫ 0 π 2 a 2 s i n θ + b 2 c o s θ d θ 4\times \int_{0}^{ \frac{\pi}{2}} \sqrt{a^2 sin\theta + b^2 cos\theta} d\theta 4×02πa2sinθ+b2cosθ dθ

龙贝格积分法Matlab代码

function Romberg(fun,a,b,tol)
M = 1;      %每次的步数
k = 0;      %积分表的行
h = b - a;  %最大步长
tol1 = 1;
R = zeros(10,10); %分配矩阵大小
R(1,1) = h*(feval(fun,a) + feval(fun,b))/2; %第一个值
while tol1 >= tol
    k = k + 1;
    h = h/2;
    tmp = 0;
    %一列中上下行的关系
    for i = 1:M
        tmp = tmp + fun(a + h*(2*i - 1));
    end
    R(k+1,1) = R(k,1)/2 + h*tmp;
    %更新步数
    M = 2*M;
    %构造在同一行中,左右列元素的关系
    for m = 1:min(k,3)
        R(k + 1,m + 1) = R(k+1,m)+(R(k+1,m)-R(k,m))/(4^m-1);
    end
    %计算第四列的龙贝格的误差
    tol1=abs(R(k,min(k,4))-R(k+1,min(k,4)));
end
q = R(k+1, 4)
R

命令

此处针对a = 20,b = 10的椭圆方程而言。

>> a = 0;
>> b = pi/2;
>> f = @(x)4*sqrt(400.*sin(x).*sin(x)+100.*cos(x).*cos(x));
>> tol = 1e-4;
>> Romberg(f,a,b,tol);
[原文] 一、为了更好、更准确的说明数学里的一些词句概念,在这里引进一个基,界,及相似形形概念。 1、什么是基?基是长轴相等且相对不变的同类几何图形的长轴,界:这里是界线,比如说零是正数和负数的界。界是指几何面两轴相等,几何体三轴同时相等的几何体。 ①长相等的长方形,包括正方形是同基长方形。长叫做这些长方形的同基长,同基里的正方形是长方形的界,而这些长方形与界正方形是相似面积。 ② 椭圆:长轴相等的椭圆是同基椭圆。 以短轴相等的椭圆,包括圆,也是同基椭圆,圆是两类椭圆的分界。长轴相等的椭圆的长轴叫同基长。同基里的圆面积(或周长)是椭圆面积(或周长)的面积(或周长)的界。 ③抛物面:长轴相等的抛物面是同基抛物面。两轴 相等的抛物面面积为同基抛物面的界。两轴相等抛 物面的弧长,为同基抛物面弧长界。 ④椭圆球:球体积是同基面椭圆球体积的体积界。 球表面积是同基面椭圆球面积的的曲面面积界。画出凸半球的同基面的球曲面面积界,(即三轴相等)以同基面为底面,连接上顶点,做内接圆锥形的界(三轴相等)以AB即2a为直径的圆面积;是凸半球和内接圆锥形的同基面S,S面为基面,AO=OB=OC=a,当OC<AO时,AO=a为基长,当OC>AO时,OC为基长,在计算弧长和凸球曲面面积的公式中,两轴相比时,长轴即基长,永远为分母。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值