Environment Requirements
• PaddlePaddle 2.1 (Get API support)
• OS: 64-bit(Going to run 64-bit programs)
• Python 3(3.5.1+/3.6/3.7/3.8/3.9),64-bit version
• pip/pip3(9.0.1+),64-bit version (Get environment support)
• CUDA >= 10.1 (NVIDIA GPU Parallel Computing Framework)
• cuDNN >= 7.6 (NVIDIA GPU acceleration library)
新手小白用anaconda安装paddlepaddle教程~
一、安装Anaconda
https://www.anaconda.com/download/
选择对应的版本下载安装,推荐装在其他盘上,占内存较大,在安装的时候一定要勾选添加环境变量。
二.cuda安装
对于本地使用GPU训练模型的时候光有显卡驱动是不够的,还需要CUDA来支持,看飞浆paddlepaddle要求的cuda版本以及显卡能支持的最高版本是否冲突。
飞浆:
显卡:
桌面右键->NVIDIA控制面板->帮助->系统信息->组件->NVCUDA64.DLL
显卡最高支持CUDA版本为11.1.96,飞浆最低要求版本为10.1.我选择安装了10.1版本的。下载链接:
https://developer.nvidia.com/cuda-toolkit-archive
打开cuda_10.1.105_418.96_win10.exe
安装包
提示的是临时解压路径,完成安装会自动删除,不要和安装路径重复,否则会安装失败
同意并继续->精简->下一步->…->安装完成
添加系统变量:右键计算机->属性->高级系统设置->高级->环境变量
在系统环境变量中添加两个变量:(如果已经有了就不用加了)
变量名:CUDA_PATH
变量值:CUDA安装地址(默认:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1)
变量名:CUDA_PATH_V10_1
变量值:CUDA安装地址(默认:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1)
添加完两个变量后,为系统变量的 path 添加2个值:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\libnvvp
安装测试
打开cmd输入nvcc -V
输出以下内容表示CUDA安装成功
三、安装cuDNN
网址:https://developer.nvidia.com/rdp/cudnn-archive
要先注册账号,然后下载,下载cuDNN的时候要和CUDA的版本对应
cuDNN下载完成后,解压,将解压后的三个文件夹复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1
,既完成。
四、安装PaddlePaddle
(一)、安装准备
1. 新建一个虚拟环境。
打开Anaconda Prompt,输入
conda create -n paddle python=3.7
说明:-n是代表创建的环境名称 python=3.7表示该环境使用3.7版本python
2.完成之后激活环境,配置paddle
conda update --all
更新完成…
3.进入Anaconda虚拟环境
activate paddle
4.查看python位置
where python
D:\develop\anaconda\envs\paddle\python.exe
D:\develop\anaconda\python.exe
C:\Users\ws\AppData\Local\Microsoft\WindowsApps\python.exe
根据您的环境,您可能需要将说明中所有命令行中的 python 替换为具体的 Python 路径
5.检查Python版本
python --version
Python 3.7.11
6.确认Python和pip是64bit,并且处理器架构是x86_64(或称作x64、Intel 64、AMD64)架构,目前PaddlePaddle不支持arm64架构。下面的第一行输出的是”64bit”,第二行输出的是”x86_64(或x64、AMD64)”即可:
python -c "import platform;print(platform.architecture()[0]);print(platform.machine())"
64bit
AMD64
(二)、开始安装
GPU版的PaddlePaddle
• 如果您是使用 CUDA 10.1,cuDNN 7 (cuDNN版本>=7.6.5),安装GPU版本的命令为:
conda install paddlepaddle-gpu==2.1.3 cudatoolkit=10.1 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/
• 如果您是使用 CUDA 10.2,cuDNN 7 (cuDNN版本>=7.6.5),安装GPU版本的命令为:
conda install paddlepaddle-gpu==2.1.3 cudatoolkit=10.2 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/
• 如果您是使用 CUDA 11.2,cuDNN 8 (cuDNN版本>=8.1.1),安装GPU版本的命令为:
conda install paddlepaddle-gpu==2.1.3 cudatoolkit=11.2 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/ -c conda-forge
(三)、验证安装
安装完成后您可以使用 python
或 python3
进入python解释器,输入import paddle
,再输入 paddle.utils.run_check()
如果出现PaddlePaddle is installed successfully!
,说明您已成功安装。