【Paddle】新手小白用win10、anaconda、安装Paddle

本教程详细介绍了如何在Windows环境下,使用Anaconda为新手小白安装PaddlePaddle。首先,需要安装Anaconda并添加环境变量。接着,下载并安装适合版本的CUDA,配置系统变量。然后,安装cuDNN并与CUDA版本对应。最后,在Anaconda虚拟环境中安装指定版本的PaddlePaddle-GPU,并通过运行测试确认安装成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Environment Requirements
•	PaddlePaddle 2.1 (Get API support)
•	OS: 64-bit(Going to run 64-bit programs)
•	Python 3(3.5.1+/3.6/3.7/3.8/3.9)64-bit version
•	pip/pip3(9.0.1+)64-bit version (Get environment support)
•	CUDA >= 10.1 (NVIDIA GPU Parallel Computing Framework)
•	cuDNN >= 7.6 (NVIDIA GPU acceleration library)

新手小白用anaconda安装paddlepaddle教程~

一、安装Anaconda

https://www.anaconda.com/download/
选择对应的版本下载安装,推荐装在其他盘上,占内存较大,在安装的时候一定要勾选添加环境变量
在这里插入图片描述

二.cuda安装

对于本地使用GPU训练模型的时候光有显卡驱动是不够的,还需要CUDA来支持,看飞浆paddlepaddle要求的cuda版本以及显卡能支持的最高版本是否冲突。
飞浆:
在这里插入图片描述

显卡:
桌面右键->NVIDIA控制面板->帮助->系统信息->组件->NVCUDA64.DLL
在这里插入图片描述

显卡最高支持CUDA版本为11.1.96,飞浆最低要求版本为10.1.我选择安装了10.1版本的。下载链接:
https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述
在这里插入图片描述

打开cuda_10.1.105_418.96_win10.exe安装包
提示的是临时解压路径,完成安装会自动删除,不要和安装路径重复,否则会安装失败

同意并继续->精简->下一步->…->安装完成
添加系统变量:右键计算机->属性->高级系统设置->高级->环境变量
在系统环境变量中添加两个变量:(如果已经有了就不用加了)

变量名:CUDA_PATH
变量值:CUDA安装地址(默认:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1)
变量名:CUDA_PATH_V10_1
变量值:CUDA安装地址(默认:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1

添加完两个变量后,为系统变量的 path 添加2个值:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\libnvvp

安装测试
打开cmd输入nvcc -V 输出以下内容表示CUDA安装成功
在这里插入图片描述

三、安装cuDNN

网址:https://developer.nvidia.com/rdp/cudnn-archive
要先注册账号,然后下载,下载cuDNN的时候要和CUDA的版本对应
在这里插入图片描述

cuDNN下载完成后,解压,将解压后的三个文件夹复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1 ,既完成。

在这里插入图片描述
在这里插入图片描述

四、安装PaddlePaddle

(一)、安装准备

1. 新建一个虚拟环境。
打开Anaconda Prompt,输入
conda create -n paddle python=3.7
说明:-n是代表创建的环境名称 python=3.7表示该环境使用3.7版本python

2.完成之后激活环境,配置paddle
conda update --all
更新完成…
3.进入Anaconda虚拟环境
activate paddle

4.查看python位置
where python
D:\develop\anaconda\envs\paddle\python.exe
D:\develop\anaconda\python.exe
C:\Users\ws\AppData\Local\Microsoft\WindowsApps\python.exe
根据您的环境,您可能需要将说明中所有命令行中的 python 替换为具体的 Python 路径

5.检查Python版本
python --version
Python 3.7.11

6.确认Python和pip是64bit,并且处理器架构是x86_64(或称作x64、Intel 64、AMD64)架构,目前PaddlePaddle不支持arm64架构。下面的第一行输出的是”64bit”,第二行输出的是”x86_64(或x64、AMD64)”即可:
python -c "import platform;print(platform.architecture()[0]);print(platform.machine())"
64bit
AMD64

(二)、开始安装

GPU版的PaddlePaddle
• 如果您是使用 CUDA 10.1,cuDNN 7 (cuDNN版本>=7.6.5),安装GPU版本的命令为:

conda install paddlepaddle-gpu==2.1.3 cudatoolkit=10.1 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/

• 如果您是使用 CUDA 10.2,cuDNN 7 (cuDNN版本>=7.6.5),安装GPU版本的命令为:
conda install paddlepaddle-gpu==2.1.3 cudatoolkit=10.2 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/
• 如果您是使用 CUDA 11.2,cuDNN 8 (cuDNN版本>=8.1.1),安装GPU版本的命令为:
conda install paddlepaddle-gpu==2.1.3 cudatoolkit=11.2 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/ -c conda-forge

(三)、验证安装

安装完成后您可以使用 pythonpython3 进入python解释器,输入import paddle ,再输入 paddle.utils.run_check()
如果出现PaddlePaddle is installed successfully!,说明您已成功安装。

在这里插入图片描述

<think>好的,我现在需要解决用户提出的PaddlePaddle-GPU安装失败的问题。根据用户提供的引用资料,我得先整理已有的信息,然后一步步分析可能的原因和解决方案。 首先,用户提到了安装CUDA 12.0后出现libstdc++.so.6版本问题,显示缺少GLIBCXX_3.4.30[^1]。这说明系统里的GLIBC++库版本不够新,可能CUDA 12.0需要更高版本的支持。这时候可能需要更新系统的libstdc++6包,或者降低CUDA版本。 然后,引用[2]提到使用Docker镜像可以避免安装依赖的问题,因为所有东西都打包好了。这可能是一个快速解决方案,尤其是对于不想手动处理依赖的用户来说,安装Docker然后使用官方镜像应该能省去很麻烦。 引用[3]给出的是通过conda安装特定版本的paddlepaddle-gpu和cudatoolkit。这里指定了版本2.6.1和CUDA 11.7,并且使用了清华的镜像源。这说明版本兼容性很重要,特别是CUDA和PaddlePaddle的版本需要匹配。用户可能安装了不兼容的版本组合,导致安装失败。 引用[4]中用户尝试重新执行pip install,但可能没有解决依赖问题。有时候,单纯重新安装可能不够,需要检查requirements.txt中的版本是否正确,或者是否存在其他依赖冲突。 综合这些信息,我需要分步骤给出解决方案。首先检查CUDA和cuDNN版本是否匹配PaddlePaddle的要求。然后考虑使用conda安装指定版本,或者使用Docker简化流程。如果遇到GLIBCXX问题,可能需要更新系统库或降低CUDA版本。此外,确保pip或conda的源配置正确,比如使用清华镜像加速下载。 可能还需要用户确认他们的系统环境,比如Ubuntu版本,CUDA是否正确安装,是否有个CUDA版本导致冲突。另外,建议用户参考官方文档的版本匹配表格,这能有效避免兼容性问题。如果用户不想处理依赖,推荐Docker方式,这可能最省事。 最后,生成相关问题的时候,要考虑用户可能遇到的后续问题,比如环境验证、其他依赖安装、Docker的使用方法,以及如何选择CUDA版本等。</think>针对PaddlePaddle-GPU安装失败问题,以下是分步解决方案: ### 一、检查版本兼容性(关键步骤) PaddlePaddle-GPU版本必须与CUDA、cuDNN、Python版本严格匹配。例如: $$ \text{PaddlePaddle 2.6.1} \leftrightarrow \text{CUDA 11.7} \leftrightarrow \text{cuDNN 8.4} $$ 建议通过[PaddlePaddle官网版本对照表](https://www.paddlepaddle.org.cn/)确认兼容组合[^3]。 ### 二、推荐安装方法 #### 方法1:Conda安装(推荐) ```bash conda create -n paddle_env python=3.8 conda activate paddle_env conda install paddlepaddle-gpu==2.6.1 cudatoolkit=11.7 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/ -c conda-forge ``` 此方法自动解决CUDA依赖问题[^3] #### 方法2:Docker部署(环境隔离) ```bash docker pull paddlepaddle/paddle:latest-gpu-cuda11.7-cudnn8 nvidia-docker run -it --name paddle_demo paddlepaddle/paddle:latest-gpu-cuda11.7-cudnn8 /bin/bash ``` 该方案可跳过本地环境配置[^2] ### 三、常见错误处理 1. **GLIBCXX版本问题**: ```bash sudo apt-get update sudo apt-get install libstdc++6 # 验证版本 strings /usr/lib/x86_64-linux-gnu/libstdc++.so.6 | grep GLIBCXX ``` 若仍无法解决,建议使用CUDA 11.x版本[^1] 2. **依赖冲突**: ```bash python -m pip install paddlepaddle-gpu==2.6.1.post117 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html ``` ### 四、验证安装 ```python import paddle print(paddle.utils.run_check()) # 应输出"PaddlePaddle is installed successfully!"[^1] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值