深度学习

1. 简介

深度学习的发展源头–神经网络

1.1 深度学习 —— 神经网络简介

深度学习(Deep Learning)(也称为深度结构学习【Deep Structured Learning】、层次学习【Hierarchical Learning】或者是深度机器学习【Deep Machine Learning】)是一类算法集合,是机器学习的一个分支。

深度学习-神经网络

深度学习方法近年来,在会话识别、图像识别和对象侦测等领域表现出了惊人的准确性。

但是,“深度学习”这个词语很古老,它在1986年由Dechter在机器学习领域提出,然后在2000年有Aizenberg等人引入到人工神经网络中。而现在,由于Alex Krizhevsky在2012年使用卷积网络结构赢得了ImageNet比赛之后受到大家的瞩目。

卷积网络之父:Yann LeCun

卷积神经网络

  • 深度学习演示

链接:http://playground.tensorflow.org

深度学习

1.2 深度学习各层负责内容

  • 多层神经网络,在最初几层是识别简单内容,后面几层是识别一些复杂内容。
  • 神经网络各层负责内容:

1. 第一层

负责识别颜色及简单纹理

深度学习第一层

2. 第二层

一些神经元可以识别更加细化的纹理,布纹,刻纹,叶纹等

深度学习第二层

3. 第三层

一些神经元负责感受黑夜里的黄色烛光,高光,萤火,鸡蛋黄色等。

深度学习第三层

4. 第四层

一些神经元识别萌狗的脸,宠物形貌,圆柱体事物,七星瓢虫等的存在。

深度学习第四层

5. 第五层

一些神经元负责识别花,黑眼圈动物,鸟,键盘,原型屋顶等。

深度学习第五层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值