1. 简介
深度学习的发展源头–神经网络
1.1 深度学习 —— 神经网络简介
深度学习(Deep Learning)(也称为深度结构学习【Deep Structured Learning】、层次学习【Hierarchical Learning】或者是深度机器学习【Deep Machine Learning】)是一类算法集合,是机器学习的一个分支。
深度学习方法近年来,在会话识别、图像识别和对象侦测等领域表现出了惊人的准确性。
但是,“深度学习”这个词语很古老,它在1986年由Dechter在机器学习领域提出,然后在2000年有Aizenberg等人引入到人工神经网络中。而现在,由于Alex Krizhevsky在2012年使用卷积网络结构赢得了ImageNet比赛之后受到大家的瞩目。
卷积网络之父:Yann LeCun
- 深度学习演示
链接:http://playground.tensorflow.org
1.2 深度学习各层负责内容
- 多层神经网络,在最初几层是识别简单内容,后面几层是识别一些复杂内容。
- 神经网络各层负责内容:
1. 第一层
负责识别颜色及简单纹理
2. 第二层
一些神经元可以识别更加细化的纹理,布纹,刻纹,叶纹等
3. 第三层
一些神经元负责感受黑夜里的黄色烛光,高光,萤火,鸡蛋黄色等。
4. 第四层
一些神经元识别萌狗的脸,宠物形貌,圆柱体事物,七星瓢虫等的存在。
5. 第五层
一些神经元负责识别花,黑眼圈动物,鸟,键盘,原型屋顶等。