逻辑回归

23 篇文章 1 订阅
15 篇文章 1 订阅

1. 简介

1.1 定义

  • 逻辑回归(Logistic Regression)是机器学习中的一种分类模型
  • 逻辑回归是一种分类算法,虽然名字中带有回归
  • 由于算法的简单和高效,在实际中应用非常广泛

1.2 特点

  • 逻辑回归的输入是线性回归的输出
  • 都属于两个类别之间的判断,解决二分类问题的利器

1.3 应用场景

  • 数据不均衡问题和二分类问题
    • 广告点击率
    • 是否为垃圾邮件
    • 是否患病
    • 金融诈骗
    • 虚假账号

1.3 原理

sigmoid:  h(t) = 1/(1+e^(-t))

def sigmoid(t):

  return 1/(1+np.e**(-t))

要想掌握逻辑回归,必须掌握两点:

  • 逻辑回归中,其输入值是什么

  • 如何判断逻辑回归的输出

1. 输入

线性回归:
逻辑回归输入

逻辑回归的输入就是一个线性回归的结果。 线性回归的输出

2. 激活函数

  • sigmoid函数
    • 把整体的值映射到[0,1]
    • 再设置一个阈值,进行分类判断

逻辑回归激活函数

  • 判断标准
    • 回归的结果输入到sigmoid函数当中
    • 输出结果:[0, 1]区间中的一个概率值,默认为0.5为阈值

逻辑回归激活函数

逻辑回归最终的分类是通过属于某个类别的概率值来判断是否属于某个类别,并且这个类别默认标记为1(正例),另外的一个类别会标记为0(反例)。(方便损失计算)

输出结果解释:假设有两个类别A,B,并且假设概率值为属于A(1)这个类别的概率值。现在有一个样本的输入到逻辑回归输出结果0.55,那么这个概率值超过0.5,意味着训练或者预测的结果就是A(1)类别。反之,如果得出结果为0.3,那么训练或者预测结果就为B(0)类别。

逻辑回归的阈值是可以进行改变的,比如上面举例中,如果把阈值设置为0.6,那么输出的结果0.55,就属于B类。

用均方误差可以来衡量线性回归的损失

在逻辑回归中,当预测结果不对的时候,该怎么衡量其损失呢?

下图(下图中,设置阈值为0.6)

衡量损失

3. 损失以及优化

衡量逻辑回归的预测结果与真实结果的差异

  • 损失
    • 对数似然损失
    • 借助了log思想,进行完成
    • 真实值等于0,等于1两种情况进行划分
  • 优化
    • 提升原本属于1类别的概率,降低原本是0类别的概率
3.1 损失

逻辑回归的损失,称之为对数似然损失,公式如下:

分开类别:

对数似然损失

其中y为真实值,为预测值

根据-log(t)的函数图像来理解单个的式子

单个式子

希望损失函数值,越小越好

分情况讨论,对应的损失函数值:

  • 当y=1时,希望值越大越好
  • 当y=0时,希望值越小越好
  • 综合完整损失函数

综合损失函数

在这里插入图片描述

-log§, P值越大,结果越小,可以对着这个损失的式子去分析

3.2 优化

同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率。

2. api

sklearn.linear_model.LogisticRegression(solver='liblinear', penalty=‘l2’, C = 1.0)
# solver可选参数:{'liblinear', 'sag', 'saga','newton-cg', 'lbfgs'},
	默认: 'liblinear';用于优化问题的算法。
	对于小数据集来说,“liblinear”是个不错的选择,而“sag”和'saga'对于大型数据集会更快。
	对于多类问题,只有'newton-cg', 'sag', 'saga'和'lbfgs'可以处理多项损失;“liblinear”仅限于“one-versus-rest”分类。
	penalty:正则化的种类
	C:正则化力度

默认将类别数量少的当做正例

LogisticRegression方法相当于 SGDClassifier(loss=“log”, penalty=" ")
SGDClassifier实现了一个普通的随机梯度下降学习。而使用LogisticRegression(实现了SAG)

3. 应用

  • 案例:癌症分类预测-良/恶性乳腺癌肿瘤预测

3.1 背景

数据

数据

原始数据的下载地址:https://archive.ics.uci.edu/ml/machine-learning-databases/

数据描述
(1)699条样本,共11列数据,第一列用语检索的id,后9列分别是与肿瘤
相关的医学特征,最后一列表示肿瘤类型的数值。
(2)包含16个缺失值,用”?”标出。

3.2 流程

1.获取数据
2.基本数据处理
2.1 缺失值处理
2.2 确定特征值,目标值
2.3 分割数据
3.特征工程(标准化)
4.机器学习(逻辑回归)
5.模型评估

3.3 实现

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression

import ssl
ssl._create_default_https_context = ssl._create_unverified_context
# 1.获取数据
names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape',
                   'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin',
                   'Normal Nucleoli', 'Mitoses', 'Class']

data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",
                  names=names)
data.head()
# 2.基本数据处理
# 2.1 缺失值处理
# 查看缺失值
data[data.replace(to_replace="?", value=np.NaN).isna().any(axis=1)]
# 处理缺失值
data = data.replace(to_replace="?", value=np.NaN)
data = data.dropna()
# 2.2 确定特征值,目标值
x = data.iloc[:, 1:10]
x.head()
y = data["Class"]
y.head()
# 2.3 分割数据
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)
# 3.特征工程(标准化)
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
# 4.机器学习(逻辑回归)
estimator = LogisticRegression()
estimator.fit(x_train, y_train)
# 5.模型评估
y_predict = estimator.predict(x_test)
y_predict
estimator.score(x_test, y_test)

在很多分类场景当中不一定只关注预测的准确率!!!!!

比如以这个癌症举例子!!!并不关注预测的准确率,而是关注在所有的样本当中,癌症患者有没有被全部预测(检测)出来。

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值