机器学习实战(书)
壮壮不太胖^QwQ
我在学习
博客为鉴
展开
-
机器学习-P5 朴素贝叶斯算法(书P53)
文章目录一,概述1,条件概率(Condittional probability)2,全概率公式3,贝叶斯推断二,举个“栗子”(手动星标)三,朴素贝叶斯的种类如何选择1,高斯分布的朴素贝叶斯算法GaussianNB在sklearn中的实现2,多项式分布的朴素贝叶斯算法MultinomialNB在sklearn中的实现3,伯努利分布的朴素贝叶斯BernoulliNB在sklearn中的实现四,朴素贝叶...原创 2020-03-28 21:39:28 · 1086 阅读 · 0 评论 -
机器学习-P4 决策树 / 分类树(书P33)
文章目录一,概述1,什么是决策树2,特征选择3,香农熵及计算函数二,代码实现1,需要用到的库(pandas传送门)2,数据集3,计算香农熵4,信息增益5,数据集最佳切分函数找出最佳切分列按照给定列切分数据集6,递归构建决策树ID3 算法编写代码构建决策树决策树的存储使用决策树执行分类预测7,使用sklearn中的包实现决策树的绘制需要使用的包数据的前处理构建决策树 一,概述 1,什么是决策树 首先...原创 2020-03-22 16:42:12 · 788 阅读 · 0 评论