原网站:sklearn官网
使用sklearn计算 F1 score
sklearn.metrics.f1_score(y_true, y_pred, labels=None,
pos_label=1, average='binary', sample_weight=None,
zero_division='warn')
计算F1分数,也称为平衡F分数或F测度
F1分数可以解释为精度和查全率的加权平均值,其中F1分数在1时达到最佳值,在0时达到最差值。精度和查全率对F1分数的相对贡献相等。F1分数的公式为:
F1 = 2 * (precision * recall) / (precision + recall)
在多类别和多标签的情况下,这是每个类别的F1分数的平均值,其权重取决于average 参数。
参数说明:
y_true:1d数组,或标签指示符数组/稀疏矩阵
基本事实(正确)目标值。
y_pred:1d数组,或标签指示符数组/稀疏矩阵
分类器返回的估计目标。
labels:list,optional
包括when的标签集,以及if的顺序。可以排除数据中存在的标
签,例如,以忽略多数否定类别的方式计算多类平均值,而数
据中不存在的标签将导致宏平均值中的0成分。对于多标签目
标,标签是列索引。默认情况下,和 中的所有标签均按排序顺
序使用。
average != 'binary'average is Noney_truey_pred
pos_label:str或int,默认值为1
要报告是否average='binary'以及数据是否为二进制的类。如果数据是
多类或多标签的,则将被忽略;设置,labels=[pos_label]并且只会报
告该标签的得分。average != 'binary'
average:string,