sklearn.metrics.f1_score 使用方法

本文介绍如何在sklearn中使用f1_score,作为精度和查全率的加权平均值,它衡量了二者的平衡。F1分数在1时最优,0时最差。在多类别和多标签场景下,F1分数会基于average参数进行加权平均。当分母为0时,sklearn默认设置分数为0,并发出警告,这一行为可以通过zero_division参数调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原网站:sklearn官网

使用sklearn计算 F1 score

sklearn.metrics.f1_score(y_true, y_pred, labels=None, 
				pos_label=1, average='binary', sample_weight=None,
			    zero_division='warn')

计算F1分数,也称为平衡F分数或F测度

F1分数可以解释为精度和查全率的加权平均值,其中F1分数在1时达到最佳值,在0时达到最差值。精度和查全率对F1分数的相对贡献相等。F1分数的公式为:

F1 = 2 * (precision * recall) / (precision + recall)

在多类别和多标签的情况下,这是每个类别的F1分数的平均值,其权重取决于average 参数。

参数说明:

y_true:1d数组,或标签指示符数组/稀疏矩阵
		基本事实(正确)目标值。

y_pred:1d数组,或标签指示符数组/稀疏矩阵
		分类器返回的估计目标。

labels:list,optional
		包括when的标签集,以及if的顺序。可以排除数据中存在的标
		签,例如,以忽略多数否定类别的方式计算多类平均值,而数
		据中不存在的标签将导致宏平均值中的0成分。对于多标签目
		标,标签是列索引。默认情况下,和 中的所有标签均按排序顺
		序使用。
		average != 'binary'average is Noney_truey_pred

pos_label:strint,默认值为1
	 	   要报告是否average='binary'以及数据是否为二进制的类。如果数据是
		   多类或多标签的,则将被忽略;设置,labels=[pos_label]并且只会报
		   告该标签的得分。average != 'binary'

average:string, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值