scipy.stats.pearsonr - 皮尔森相关系数

该博客介绍了如何利用scipy.stats.pearsonr函数计算皮尔森相关系数,用于评估特征与标签之间的线性相关性。通过示例展示了在1000个样本的3维数据中,如何找出与标签相关性最高的特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

函数:pearsonr(x,y)

功能:

    计算特征与目标变量之间的相关度

参数说明:

1)输入:x为特征,y为目标变量.
2)输出:r: 相关系数 [-1,1]之间,p-value: p值。
     注: p值越小,表示相关系数越显著,一般p值在500个样本以上时有较高的可靠性。

示例:

数据

  • 样本数:1000
  • 特征数:3(3维数据)
  • 重要特征:1
from sklearn.datasets import make_regression

X,y = make_regression(n_samples=1000, n_featur
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值