【GEE 学习】GEE筛选月内所有遥感影像并计算月均值

本文介绍了如何使用GoogleEarthEngine(GEE)对MODIS/MCD43A3数据进行筛选,计算每个月的波段平均值,将其转换为新波段,并最终批量导出到Drive。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

// 筛选每月的影像,求均值,添加为新的波段,批量导出
// 20240117 21:16 YMJ

// 定义区域
var geometry = ee.FeatureCollection("users/yuanmengjia9991/area");

// 定义影像筛选时间
var start = ee.Date('2022-01-01');
var end = ee.Date('2022-02-01');

// 影像数据集,提取波段,限制时间
var collection = ee.ImageCollection("MODIS/061/MCD43A3")
                  .select("Albedo_BSA_shortwave")
                  .filterDate(start, end)

// 计算每月的平均值,0.001是scale缩放因子
var monthlyMean = collection.reduce(ee.Reducer.mean()).multiply(0.001);

// 设置时间属性
monthlyMean = monthlyMean.set('system:time_start', startMonth.millis());
print(monthlyMean)

// 添加为新波段
monthlyMean = monthlyMean.addBands(monthlyMean.select("Albedo_BSA_shortwave_mean")
                         .rename("Albedo"))
                                               
// 引入批量导出函数
var batch = require('users/fitoprincipe/geetools:batch')

//导出影像
batch.Download.ImageCollection.toDrive(monthlyMean, 'Albedo', {
  // scale: 30,
  region: geometry
  
}) 

<think>好的,我现在需要回答用户关于Google Earth Engine(GEE)进行遥感影像合成方法的问题。首先,我需要回忆之前用户提供的引用内容和之前的回答,确保信息的一致性。用户提到了几个引用,涉及下载MODIS NDVI影像、批量下载Landsat数据以及使用GEE应用生成动态图等,这些都可能与影像合成相关。 首先,影像合成通常包括时间合成(如度、年度合成)和空间合成(如镶嵌)。GEE中常用的方法包括使用ee.ImageCollection类进行处理,可能涉及过滤、映射函数、减少操作等。例如,用户引用[1]提到MODIS合成日间NDVI逐年影像,这可能用到了时间序列的合成,比如最大值合成(MVC)来减少云的影响。 接下来,我需要考虑用户可能的合成需求,如去云、时间聚合、波段计算等。例如,Landsat数据常需要云掩膜,这可能涉及到每个影像的预处理步骤,如使用QA波段或像素质量评估。引用[3]提到批量下载Landsat影像,可能用户需要了解如何在合成前处理这些数据。 然后,合成方法可能包括使用中值、均值、最大值等统计量。例如,使用ImageCollection.reduce(ee.Reducer.median())来生成中值合成影像。此外,用户可能对时间序列分析感兴趣,如生成年度NDVI合成,这需要按年份分组应用相应的减少器。 另外,用户引用[4]提到生成GIF动态图,这可能涉及时间序列影像的合成,需要按时间顺序合成帧图像。这里可能需要使用到时间序列的动画生成方法,如将每个时间段的合成影像组合成动画。 还需要考虑地理边界的处理,如使用感兴趣区域(ROI)进行裁剪,这可能涉及到geometry参数在reduce操作中的应用。同时,导出合成的结果到Google Drive或Assets,这也是用户可能关心的步骤,如使用Export.image.toDrive()函数。 最后,用户可能需要具体的代码示例,如如何进行中值合成、最大值合成,以及如何应用云掩膜。要确保代码符合GEEJavaScript或Python API语法,但根据用户之前的示例,可能需要用Python风格,但GEE主要使用JavaScript,不过用户可能熟悉Python,所以可能需要调整说明。 需要验证每个步骤的正确性,比如云掩膜函数是否正确应用,减少器是否合适,时间过滤是否正确。同时,引用相关的文献或指南,如引用[1]、[3]中的方法,来支持回答的可靠性。 总结,回答应包括影像合成的基本步骤、常用方法(如中值、最大值合成)、云处理、时间聚合、空间裁剪,以及导出结果。同时,生成相关问题,如如何处理云覆盖、如何选择最佳合成方法、如何导出结果等。</think>### Google Earth Engine 遥感影像合成方法 Google Earth Engine (GEE) 的遥感影像合成主要通过时间序列数据的时空聚合实现,核心步骤包括**数据筛选、预处理、聚合方法选择**,最终生成无云或低噪声的合成影像。以下是具体方法及示例: --- #### **1. 数据筛选与预处理** - **时间范围过滤** 使用 `filterDate()` 限定时间范围,例如提取某年的影像: ```javascript var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2020-01-01', '2020-12-31'); ``` - **空间范围裁剪** 通过 `filterBounds()` 或几何对象裁剪感兴趣区域(ROI): ```javascript var roi = ee.Geometry.Rectangle([116.0, 39.0, 117.0, 40.0]); var clippedCollection = collection.filterBounds(roi); ``` - **云掩膜处理** 利用 QA 波段或专用算法(如 Landsat 的 CFMASK)去除云污染: ```javascript function maskClouds(image) { var qa = image.select('QA_PIXEL'); var cloudMask = qa.bitwiseAnd(1 << 3).eq(0); // 第4位为云标志位 return image.updateMask(cloudMask); } var cloudFreeCollection = collection.map(maskClouds); ``` --- #### **2. 影像合成方法** - **中值合成(Median Composite)** 通过统计时间序列中每个像素的中值,有效消除异常值: ```javascript var medianComposite = cloudFreeCollection.median(); ``` - **最大值合成(Max NDVI Composite)** 常用于植被指数(如 NDVI)分析,突出生长季峰值: ```javascript var ndviMaxComposite = cloudFreeCollection.select('NDVI').max(); ``` - **均值合成(Mean Composite)** 适用于平稳变化的地表参数(如地表温度): ```javascript var meanComposite = cloudFreeCollection.mean(); ``` - **自定义波段计算** 例如计算 NDVI 后合成: ```javascript var withNDVI = cloudFreeCollection.map(function(image) { var ndvi = image.normalizedDifference(['B5', 'B4']).rename('NDVI'); return image.addBands(ndvi); }); var ndviComposite = withNDVI.select('NDVI').median(); ``` --- #### **3. 时间序列聚合** 按时间维度分组生成年度/度合成影像: ```javascript // 按年份分组 var annualComposite = ee.ImageCollection.fromImages( years.map(function(year) { var filtered = collection.filter(ee.Filter.calendarRange(year, year, 'year')); return filtered.median().set('year', year); }) ); ``` --- #### **4. 结果导出** 将合成影像导出至 Google Drive 或 GEE Assets: ```javascript Export.image.toDrive({ image: medianComposite, description: 'Median_Composite_2020', scale: 30, region: roi }); ``` --- #### **典型应用示例** - **MODIS NDVI 年际合成** 引用[1]中提到的逐年 NDVI 合成可通过 `MOD13Q1` 数据集实现: ```javascript var modisNDVI = ee.ImageCollection('MODIS/006/MOD13Q1') .filterDate('2010-01-01', '2020-12-31') .select('NDVI'); var annualNDVI = modisNDVI.map(function(img) { var year = ee.Date(img.get('system:time_start')).get('year'); return img.set('year', year); }).median().divide(10000); // MODIS NDVI需缩放 ``` - **Landsat 年度无云合成** 引用[3]中 Landsat 数据结合去云算法生成中值合成影像,适用于地表覆盖分析[^3]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值