复数的一些结果


layout : post
pid : 25
title: 复数的一些结果
date: 2020-08-31 11:59:13 +0800
cover_url: http://ww1.sinaimg.cn/large/006bYYnlly1gi9s38pv0wj30jg0av0uu.jpg
category: Math

a + i b = a 2 + b 2 ∠ a r c t a n b a = a 2 + b 2 ∠ a r g ( a + i b ) a+ib=\sqrt{a^2+b^2} \angle arctan \dfrac{b}{a}=\sqrt{a^2+b^2} \angle arg (a+ib) a+ib=a2+b2 arctanab=a2+b2 arg(a+ib)


一个错误的例子

∫ 1 x d x = l n x = ∫ − 1 − x d x = ∫ 1 − x d ( − x ) = l n ( − x ) \int \frac{1}{x} dx= lnx = \int \frac{-1}{-x} dx = \int \frac{1}{-x} d(-x) =ln(-x) x1dx=lnx=x1dx=x1d(x)=ln(x)


分圆方程

z n − 1 = 0 ⇒ ( z − 1 ) ( z n − 1 + z n − 2 + ⋯ + z + 1 ) = 0 ⇒ z = c o s ( k 2 π n ) + i s i n ( k 2 π n ) \begin{aligned} z^n-1=0 \Rightarrow (z-1)(z^{n-1}+z^{n-2}+\cdots+z+1)=0 \Rightarrow z=cos(k \dfrac{2 \pi}{n})+isin(k \dfrac{2 \pi}{n}) \end{aligned} zn1=0(z1)(zn1+zn2++z+1)=0z=cos(kn2π)+isin(kn2π)


( cos ⁡ θ + i sin ⁡ θ ) − 1 = cos ⁡ ( − θ ) + i sin ⁡ ( − θ ) = cos ⁡ θ − sin ⁡ θ \begin{aligned} (\cos \theta + i \sin \theta)^{-1}=\cos(-\theta)+i\sin(-\theta)= \cos \theta-\sin \theta \end{aligned} (cosθ+isinθ)1=cos(θ)+isin(θ)=cosθsinθ
因而有
1 = ( cos ⁡ θ + i sin ⁡ θ ) ( cos ⁡ θ − sin ⁡ θ ) = cos ⁡ 2 θ + sin ⁡ 2 θ \begin{aligned} 1=(\cos \theta + i \sin \theta)(\cos \theta-\sin \theta)=\cos ^2 \theta + \sin ^2 \theta \end{aligned} 1=(cosθ+isinθ)(cosθsinθ)=cos2θ+sin2θ


{ z = cos ⁡ θ + i sin ⁡ θ = e i θ z − 1 = cos ⁡ θ − i sin ⁡ θ = e − i θ ⇒ { cos ⁡ θ = e i θ + e − i θ 2 sin ⁡ θ = e i θ − e − i θ 2 i \begin{aligned} \begin{cases} z= \cos \theta +i \sin \theta = e^{i \theta} \\ z^{-1}=\cos \theta - i \sin \theta =e^{-i \theta} \end{cases} \Rightarrow \begin{cases} \cos \theta=\dfrac{e^{i \theta}+e^{-i \theta}}{2} \\ \sin \theta =\dfrac{e^{i \theta}-e^{-i \theta}}{2i} \end{cases} \end{aligned} {z=cosθ+isinθ=eiθz1=cosθisinθ=eiθcosθ=2eiθ+eiθsinθ=2ieiθeiθ


cos ⁡ ( 1 2 θ ) = 1 + cos ⁡ θ 2 = 2 + 2 cos ⁡ θ 2 \begin{aligned} \cos(\frac{1}{2} \theta)=\sqrt{\dfrac{1+\cos \theta}{2}}=\dfrac{\sqrt{2+2 \cos \theta}}{2} \end{aligned} cos(21θ)=21+cosθ =22+2cosθ

sin ⁡ θ = 2 sin ⁡ ( 1 2 θ ) ⋅ cos ⁡ ( 1 2 θ ) = 2 [ 2 sin ⁡ ( 1 4 θ ) ⋅ cos ⁡ ( 1 4 θ ) ] ⋅ cos ⁡ ( 1 2 θ ) = 2 n cos ⁡ ( 1 2 θ ) ⋅ cos ⁡ ( 1 4 θ ) ⋯ cos ⁡ ( 1 2 n θ ) ⋅ sin ⁡ ( 1 2 n θ ) 1 2 n θ \begin{aligned} \sin \theta & =2\sin(\dfrac{1}{2} \theta) \cdot \cos(\dfrac{1}{2} \theta)\\ & = 2[2\sin(\dfrac{1}{4} \theta) \cdot \cos(\dfrac{1}{4} \theta)] \cdot \cos(\dfrac{1}{2} \theta)\\ & = 2^n \cos(\dfrac{1}{2} \theta)\cdot \cos(\dfrac{1}{4} \theta) \cdots \cos(\dfrac{1}{2^n} \theta)\cdot \dfrac{\sin(\dfrac{1}{2^n} \theta)}{\dfrac{1}{2^n}\theta} \end{aligned} sinθ=2sin(21θ)cos(21θ)=2[2sin(41θ)cos(41θ)]cos(21θ)=2ncos(21θ)cos(41θ)cos(2n1θ)2n1θsin(2n1θ)

sin ⁡ θ θ = cos ⁡ ( 1 2 θ ) ⋅ cos ⁡ ( 1 4 θ ) ⋯ cos ⁡ ( 1 2 n θ ) ⋅ sin ⁡ ( 1 2 n θ ) 1 2 n θ \begin{aligned} \dfrac{\sin \theta}{\theta}=\cos(\dfrac{1}{2} \theta) \cdot\cos(\dfrac{1}{4} \theta) \cdots \cos(\dfrac{1}{2^n} \theta)\cdot \dfrac{\sin(\dfrac{1}{2^n} \theta)}{\dfrac{1}{2^n} \theta} \end{aligned} θsinθ=cos(21θ)cos(41θ)cos(2n1θ)2n1θsin(2n1θ)
Since
lim ⁡ n → ∞ sin ⁡ ( 1 2 n θ ) 1 2 n θ = 1 \begin{aligned} \lim\limits_{n\to\infty} \dfrac{\sin(\dfrac{1}{2^n} \theta)}{\dfrac{1}{2^n} \theta} =1 \end{aligned} nlim2n1θsin(2n1θ)=1
thus
sin ⁡ θ θ = cos ⁡ ( 1 2 θ ) ⋅ cos ⁡ ( 1 4 θ ) ⋅ cos ⁡ ( 1 8 θ ) ⋯ \begin{aligned} \dfrac{\sin \theta}{\theta}=\cos(\dfrac{1}{2} \theta) \cdot\cos(\dfrac{1}{4} \theta) \cdot \cos(\dfrac{1}{8} \theta) \cdots \end{aligned} θsinθ=cos(21θ)cos(41θ)cos(81θ)
Let
θ = π 2 \begin{aligned} \theta=\dfrac{\pi}{2} \end{aligned} θ=2π
then
2 π = cos ⁡ ( π 4 ) ⋅ cos ⁡ ( π 8 ) ⋅ cos ⁡ ( π 16 ) ⋯ \begin{aligned} \dfrac{2}{\pi}=\cos(\dfrac{\pi}{4}) \cdot \cos(\dfrac{\pi}{8}) \cdot \cos(\dfrac{\pi}{16}) \cdots \end{aligned} π2=cos(4π)cos(8π)cos(16π)

∐ k = 2 ∞ cos ⁡ ( π 2 k ) = 2 π \begin{aligned} \coprod\limits_{k=2}^ \infty \cos(\dfrac{\pi}{2^k})=\dfrac{2}{\pi} \end{aligned} k=2cos(2kπ)=π2
so
2 π = 2 2 × 2 + 2 2 × 2 + 2 + 2 2 ⋯ \begin{aligned} \dfrac{2}{\pi}=\dfrac{\sqrt{2}}{2} \times \dfrac{\sqrt{2+\sqrt{2}}}{2} \times \dfrac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \cdots \end{aligned} π2=22 ×22+2 ×22+2+2


( z + 1 ) n = z n \begin{aligned} (z+1)^n=z^n \end{aligned} (z+1)n=zn
z ≠ 0 ⇒ ( z + 1 z ) n = 1 ⇒ z + 1 z = cos ⁡ ( k ⋅ 2 π n ) + i sin ⁡ ( k ⋅ 2 π n ) , k = 0 , 1 , ⋯   , n − 1 \begin{aligned} z \neq 0 \Rightarrow (\dfrac{z+1}{z})^n=1 \Rightarrow \dfrac{z+1}{z}= \cos(k \cdot \frac{2 \pi}{n})+i \sin(k \cdot \frac{2 \pi}{n}) \quad , k=0,1,\cdots,n-1 \end{aligned} z=0(zz+1)n=1zz+1=cos(kn2π)+isin(kn2π),k=0,1,,n1
z [ 1 − cos ⁡ ( k ⋅ 2 π n ) − i sin ⁡ ( k ⋅ 2 π n ) ] = − 1 \begin{aligned} z\left[1- \cos(k \cdot \frac{2 \pi}{n})-i \sin(k \cdot \frac{2 \pi}{n})\right]=-1 \end{aligned} z[1cos(kn2π)isin(kn2π)]=1
z [ 2 sin ⁡ 2 ( k ⋅ π n ) − i 2 sin ⁡ ( k ⋅ π n ) ⋅ cos ⁡ ( k ⋅ π n ) ] = − 1 \begin{aligned} z\left[2 \sin ^2 (k \cdot \frac{\pi}{n})-i2\sin(k \cdot \frac{\pi}{n})\cdot\cos(k \cdot \frac{\pi}{n})\right]=-1 \end{aligned} z[2sin2(knπ)i2sin(knπ)cos(knπ)]=1
− i 2 z sin ⁡ ( k ⋅ π n ) ⋅ [ cos ⁡ ( k ⋅ π n ) + i sin ⁡ ( k ⋅ π n ) ] = − 1 \begin{aligned} -i2z\sin(k \cdot \frac{\pi}{n})\cdot\left[\cos(k \cdot \frac{\pi}{n})+i\sin(k \cdot \frac{\pi}{n})\right]=-1 \end{aligned} i2zsin(knπ)[cos(knπ)+isin(knπ)]=1
z = 1 i 2 sin ⁡ ( k ⋅ π n ) ⋅ [ cos ⁡ ( k ⋅ π n ) + i sin ⁡ ( k ⋅ π n ) ] = cos ⁡ ( k ⋅ π n ) − i sin ⁡ ( k ⋅ π n ) 12 sin ⁡ ( k ⋅ π n ) = − 1 2 − i 1 2 cot ⁡ ( k ⋅ π n ) k = 0 , 1 , ⋯   , n − 1 \begin{aligned} \begin{aligned} z&=\dfrac{1}{i2\sin(k \cdot \dfrac{\pi}{n})\cdot\left[\cos(k \cdot \dfrac{\pi}{n})+i\sin(k \cdot \dfrac{\pi}{n})\right]}\\ &=\dfrac{\cos(k \cdot \dfrac{\pi}{n})-i\sin(k \cdot \dfrac{\pi}{n})}{12\sin(k \cdot \dfrac{\pi}{n})}\\ &=-\dfrac{1}{2}-i\dfrac{1}{2}\cot(k \cdot \dfrac{\pi}{n}) \end{aligned} k=0,1,\cdots,n-1 \end{aligned} z=i2sin(knπ)[cos(knπ)+isin(knπ)]1=12sin(knπ)cos(knπ)isin(knπ)=21i21cot(knπ)k=0,1,,n1
因而 ( z + 1 ) n = z n (z+1)^n=z^n (z+1)n=zn的每个解都位于一条与实轴相交于 − 1 2 -\dfrac{1}{2} 21的竖直线上。


科茨定理:如果一个正 n n n边形内接于一个半径为 r r r的圆周,而且点 P P P位于一条从圆心(即这个正 n n n边形的中心)到正 n n n边形一个顶点的直线上,与圆心的距离为 a a a,那么 P P P与所有这些顶点的距离之积为
{ a n − r n , i f a > r r n − a n , i f a < r \begin{aligned} \begin{cases} a^n-r^n,if \quad a>r \\ r^n-a^n,if \quad a<r \end{cases} \end{aligned} {anrn,ifa>rrnan,ifa<r

首先,不失一般性,可以将圆心放在坐标轴的原点,并设想 P P P点位于实轴 z = a z=a z=a处,注意到正 n n n边形顶点的位置就是方程 z n − r n = 0 z^n-r^n=0 znrn=0的解。用 z k z_k zk表示第 k k k个顶点的位置,则
z n − r n = ( z − z 1 ) ( z − z 2 ) ( z − z 3 ) ⋯ ( z − z k ) \begin{aligned} z^n-r^n=(z-z_1)(z-z_2)(z-z_3)\cdots(z-z_k) \end{aligned} znrn=(zz1)(zz2)(zz3)(zzk)
利用积的绝对值等于绝对值之积这个事实,那么有
∣ z n − r n ∣ = ∣ ( z − z 1 ) ∣ ⋅ ∣ ( z − z 2 ) ∣ ⋅ ∣ ( z − z 3 ) ∣ ⋯ ∣ ( z − z k ) ∣ \begin{aligned} |z^n-r^n|=|(z-z_1)|\cdot|(z-z_2)|\cdot|(z-z_3)|\cdots|(z-z_k)| \end{aligned} znrn=(zz1)(zz2)(zz3)(zzk)
z z z是任意的,取 z = a z=a z=a,那么就有
∣ ( a − z 1 ) ∣ ⋅ ∣ ( a − z 2 ) ∣ ⋅ ∣ ( a − z 3 ) ∣ ⋯ ∣ ( a − z k ) ∣ = { a n − r n , i f a > r r n − a n , i f a < r \begin{aligned} |(a-z_1)|\cdot|(a-z_2)|\cdot|(a-z_3)|\cdots|(a-z_k)|= \begin{cases} a^n-r^n,if \quad a>r \\ r^n-a^n,if \quad a<r \end{cases} \end{aligned} (az1)(az2)(az3)(azk)={anrn,ifa>rrnan,ifa<r


∫ 0 1 x x d x = ∫ 0 1 e x ln ⁡ x d x = ∫ 0 1 [ ∑ k = 0 ∞ ( x ln ⁡ x ) k k ! ] d x = ∑ k = 0 ∞ 1 k ! [ ∫ 0 1 ( x ln ⁡ x ) k d x ] = ∑ k = 0 ∞ 1 k ! ( − 1 ) k k ! ( k + 1 ) k + 1 = 1 − 1 2 2 + 1 3 3 − 1 4 4 + 1 5 5 − ⋯ \begin{aligned} \int_0^1x^xdx & =\int_0^1e^{x\ln x}dx\\ & =\int_0^1\left[\sum_{k=0}^{\infty}\dfrac{(x \ln x)^k}{k!}\right]dx\\ & =\sum_{k=0}^{\infty}\dfrac{1}{k!}\left[\int_0^1(x \ln x)^kdx\right]\\ & =\sum_{k=0}^\infty \dfrac{1}{k!} \dfrac{(-1)^k k!}{(k+1)^{k+1}}\\ & =1-\dfrac{1}{2^2}+\dfrac{1}{3^3}-\dfrac{1}{4^4}+\dfrac{1}{5^5}-\cdots \end{aligned} 01xxdx=01exlnxdx=01[k=0k!(xlnx)k]dx=k=0k!1[01(xlnx)kdx]=k=0k!1(k+1)k+1(1)kk!=1221+331441+551


cos ⁡ ( x + i y ) = = e i ( x + i y ) + e − i ( x + i y ) 2 = e i x e − y + e − i x e y 2 = e − y ( cos ⁡ x + i sin ⁡ x ) + e y ( cos ⁡ x − i sin ⁡ x ) 2 = cos ⁡ x e y + e − y 2 − i sin ⁡ x e y − e − y 2 = cos ⁡ x cosh ⁡ y − i sin ⁡ x sinh ⁡ y \begin{aligned} \cos(x+iy)&=\\ & =\dfrac{e^{i(x+iy)}+e^{-i(x+iy)}}{2}\\ &=\dfrac{e^{ix}e^{-y}+e^{-ix}e^{y}}{2}\\ &=\dfrac{e^{-y}(\cos x +i\sin x)+e^y(\cos x -i \sin x)}{2}\\ &=\cos x \dfrac{e^y+e^{-y}}{2}-i\sin x \dfrac{e^y-e^{-y}}{2}\\ &=\cos x \cosh y - i\sin x \sinh y \end{aligned} cos(x+iy)==2ei(x+iy)+ei(x+iy)=2eixey+eixey=2ey(cosx+isinx)+ey(cosxisinx)=cosx2ey+eyisinx2eyey=cosxcoshyisinxsinhy

其中的双曲余弦和双曲正弦分别定义为

cosh ⁡ y = e y + e − y 2 sinh ⁡ e y − e − y 2 \begin{aligned} \cosh y= \dfrac{e^y+e^{-y}}{2} \quad \sinh \dfrac{e^y-e^{-y}}{2} \end{aligned} coshy=2ey+eysinh2eyey

同样地:

sin ⁡ ( x + i y ) = sin ⁡ x cosh ⁡ y + i cos ⁡ x sinh ⁡ y \begin{aligned} \sin(x+iy) = \sin x \cosh y +i \cos x \sinh y \end{aligned} sin(x+iy)=sinxcoshy+icosxsinhy

如果 x = 0 x=0 x=0,则有 cos ⁡ ( i y ) = cosh ⁡ y \cos(iy)=\cosh y cos(iy)=coshy sin ⁡ ( i y ) = i sinh ⁡ y \sin(iy)=i\sinh y sin(iy)=isinhy


1 = [ 1 0 0 1 ] , i = [ 0 − 1 1 0 ] \begin{aligned} 1= \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} , i= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \end{aligned} 1=[1001],i=[0110]

a + i b = [ a − b b a ] \begin{aligned} a+ib= \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \end{aligned} a+ib=[abba]


旋转操作,以逆时针旋转 θ \theta θ为例:

( x + i y ) ( cos ⁡ θ + i sin ⁡ θ ) = x cos ⁡ θ − y sin ⁡ θ + i ( x sin ⁡ θ + y cos ⁡ θ ) \begin{aligned} (x+iy)(\cos\theta+i\sin\theta)=x\cos\theta-y\sin\theta+i(x\sin\theta+y\cos\theta) \end{aligned} (x+iy)(cosθ+isinθ)=xcosθysinθ+i(xsinθ+ycosθ)

{ x = r cos ⁡ α y = r sin ⁡ α ⇒ { x ′ = r cos ⁡ ( α + θ ) y ′ = r sin ⁡ ( α + θ ) o r { x ′ = x cos ⁡ θ − y sin ⁡ θ y ′ = x sin ⁡ θ + y cos ⁡ θ \begin{aligned} \begin{cases} x & = r\cos\alpha\\ y & = r\sin\alpha \end{cases} \Rightarrow \begin{cases} x' & = r\cos(\alpha+\theta) \\ y' & = r\sin(\alpha+\theta) \end{cases} or \begin{cases} x' & = x\cos\theta-y\sin\theta \\ y' & = x\sin\theta+y\cos\theta \end{cases} \end{aligned} {xy=rcosα=rsinα{xy=rcos(α+θ)=rsin(α+θ)or{xy=xcosθysinθ=xsinθ+ycosθ


计算 ∫ 0 π cos ⁡ n θ cos ⁡ n θ d θ \int_0^\pi\cos^n\theta\cos n \theta d\theta 0πcosnθcosnθdθ n n n是一个任意的非负整数。
由恒等式
2 cos ⁡ θ e i θ = 1 + e i 2 θ \begin{aligned} 2\cos\theta e^{i\theta}=1+e^{i2\theta} \end{aligned} 2cosθeiθ=1+ei2θ

2 n cos ⁡ n θ e i n θ = ( 1 + e i 2 θ ) n \begin{aligned} 2^n\cos^n\theta e^{in\theta}=(1+e^{i2\theta})^n \end{aligned} 2ncosnθeinθ=(1+ei2θ)n
θ \theta θ换为 − θ -\theta θ,有
2 n cos ⁡ n θ e − i n θ = ( 1 + e − i 2 θ ) n \begin{aligned} 2^n\cos^n\theta e^{-in\theta}=(1+e^{-i2\theta})^n \end{aligned} 2ncosnθeinθ=(1+ei2θ)n
这两式相加,有
2 n cos ⁡ n θ ( e i n θ + e − i n θ ) = 2 n + 1 cos ⁡ n θ cos ⁡ n θ = ( 1 + e i 2 θ ) n + ( 1 + e − i 2 θ ) n \begin{aligned} 2^n\cos^n\theta(e^{in\theta}+e^{-in\theta})=2^{n+1}\cos^n\theta\cos n\theta=(1+e^{i2\theta})^n+(1+e^{-i2\theta})^n \end{aligned} 2ncosnθ(einθ+einθ)=2n+1cosnθcosnθ=(1+ei2θ)n+(1+ei2θ)n
因而
2 n + 1 ∫ 0 π cos ⁡ n θ cos ⁡ n θ d θ = ∫ 0 π ( 1 + e i 2 θ ) n + ( 1 + e − i 2 θ ) n d θ \begin{aligned} 2^{n+1}\int_0^\pi\cos^n\theta\cos n\theta d\theta=\int_0^\pi(1+e^{i2\theta})^n+(1+e^{-i2\theta})^nd\theta \end{aligned} 2n+10πcosnθcosnθdθ=0π(1+ei2θ)n+(1+ei2θ)ndθ
右侧取所有下述形式的积分都为 0 0 0:
∫ 0 π e i k ( 2 θ ) d θ , k = ± 1 , ± 2 , ⋯   , ± n \begin{aligned} \int_0^\pi e^{ik(2\theta)}d\theta,k=\pm1,\pm2,\cdots,\pm n \end{aligned} 0πeik(2θ)dθ,k=±1,±2,,±n
因而
2 n + 1 ∫ 0 π cos ⁡ n θ cos ⁡ n θ d θ = ∫ 0 π 2 d θ = 2 π \begin{aligned} 2^{n+1}\int_0^\pi\cos^n\theta\cos n\theta d\theta=\int_0^\pi2d\theta=2\pi \end{aligned} 2n+10πcosnθcosnθdθ=0π2dθ=2π

∫ 0 π cos ⁡ n θ cos ⁡ n θ d θ = π 2 n , n = 0 , 1 , 2 , ⋯ \begin{aligned} \int_0^\pi\cos^n\theta\cos n\theta d\theta=\dfrac{\pi}{2^n},n=0,1,2,\cdots \end{aligned} 0πcosnθcosnθdθ=2nπ,n=0,1,2,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值