复数的一些认识

1. 实数域的完美拓展

       在实数域内定义对二元有序对(a,b)的运算:(a,b)+(c,d)=(a+b,c+d);(a,b)×(c,d)=(ac-bd,ad+bc).则对于任意的z=(a,b)可以有z=(a,0)+(b,0)×(0,1)

       定义(0,1)=i,则可以发现i*i=(0,1)×(0,1)=(-1,0)=-1

       对于a∈R,取f(a)=(a,0),则f这个映射保持了实数上的加法和乘法,即实数域可以嵌入到复数域。

 

2. 最完美的公式:

       引式:

       引式证明一:几何意义法

              首先z=a+bi,则z*k的几何意义:方向不变,长度伸缩k倍;z*i的几何意义:长度不变,方向延逆时针转90°。复数的加减法即向量的加减法。

              故考虑

              则有 (这里由于复数的乘法也契合二项式定理)

              根据画图,考虑n=1,n=2,…,递推n=∞时的图像结果:图像逐渐收敛于(sinθ,cosθ)处,即.

       引式证明二:泰勒(麦克劳林)级数拼凑法

             

              则 (这里由于复数运算契合求导法则,即i只不过是一个数)

              

             

              综上:

补充:

上式每一项的组合数展开中,分子中n的最高次数等于k,所以当n->∞时,每一项的极限为1/k!,即 

另:,又\sum 1/2^{k}是收敛级数,所以也收敛!结果定义为e。

 

3. 复数的统一形式

       由的几何解释,即表示模长为1,方向为x轴正方向沿逆时针方向转θ,而z*k的几何意义:方向不变,长度伸缩k倍。

       故对于,取.则可以得到:

       进而对于,可以表示为;所以可以发现.即复数的乘法可以理解为模长相乘,辐角相加。换句话说复数的相乘分为两部分:模长的伸缩和方向的旋转,两者可以看作独立进行然后融合。

       注:当然复数的加减法理解为向量的加减更为方便一点,高中学过之后应该都很轻松能理解并应用了。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值