EchoMimic—语音驱动图像

简介

  EchoMimic是阿里巴巴达摩院推出的一个AI驱动的口型同步技术项目。通过一段音频和一张人物的面部照片,生成一个看起来像是在说话的视频,其中的人物口型动作与音频中的语音完美匹配。
  EchoMimic优点:
1.口型同步生成:能根据音频和面部照片,创造出口型动作与语音完美匹配的视频。
2.自然逼真:它会融合音频和面部特征,生成的面部动画看起来很符合真实的面部运动和表情变化。
3.多语言支持:不仅支持普通话,还能处理英语和歌唱等多种语言和风格。
  缺点:模型太大、生成时间比较久

技术原理

  EchoMimic技术核心在于结合音频与视觉分析,通过以下关键步骤实现语音驱动的面部动画:

1.音频特征提取:利用音频处理技术分析语音的节奏、音调等特征。
2.面部标志点定位:高精度面部识别算法定位关键面部区域。
3.多模态融合与动画生成:结合音频特征与面部信息,通过深度学习模型(如CNN、RNN、GAN)生成与语音同步的逼真面部表情和口型。
4.创新训练与实时处理:采用创新训练策略,结合预训练模型,实现快速适应新音频并实时生成动画。

  这些技术共同确保了EchoMimic生成的面部动画在视觉和语义上与音频内容高度一致且自然流畅。
在这里插入图片描述

算法部署

1.源码下载

git clone https://github.com/BadToBest/EchoMimic
cd EchoMimic

2.运行环境要求

Tested System Environment: Ubuntu 22.04, Cuda >= 11.7
Tested GPUs: RTX3090 (24G)
Tested Python Version: 3.8 / 3.10 / 3.11

3.创建conda环境

conda create -n echomimic python=3.8
conda activate echomimic

4.安装依赖库

pip install -r requirements.txt

5.下载ffmpeg-static并设置环境变量

下载地址:https://www.johnvansickle.com/ffmpeg/old-releases/ffmpeg-4.4-amd64-static.tar.xz
export FFMPEG_PATH=/home/nvidia/ffmpeg-4.4-amd64-static

6.下载预训练模型

git clone https://huggingface.co/BadToBest/EchoMimic pretrained_weights

./pretrained_weights/
├── denoising_unet.pth
├── reference_unet.pth
├── motion_module.pth
├── face_locator.pth
├── sd-vae-ft-mse
│ └── …
├── sd-image-variations-diffusers
│ └── …
└── audio_processor
└── whisper_tiny.p

音频驱动算法推理

编辑./configs/prompts/animation.yaml文件,替换成自己的素材

test_cases:
“./assets/test_imgs/a.png”:
- “./assets/test_audios/echomimic_en.wav”
“./assets/test_imgs/b.png”:
- “./assets/test_audios/echomimic_en_girl.wav”
“./assets/test_imgs/c.png”:
- “./assets/test_audios/echomimic_en_girl.wav”
“./assets/test_imgs/d.png”:
- “./assets/test_audios/echomimic_en_girl.wav”
“./assets/test_imgs/e.png”:
- “./assets/test_audios/echomimic_en.wav”

运行python推理脚本:

python -u infer_audio2vid.py

音频和姿态驱动算法推理

编辑./configs/prompts/animation_pose.yaml文件,替换成自己的素材

test_cases:
“./assets/test_pose_demo/d.jpg”:
- “./assets/test_pose_demo_audios/movie_0_clip_0.wav”
- “./assets/test_pose_demo_pose”

运行python推理脚本:

python -u infer_audio2vid_pose.py

运行Gradio用户界面

python -u webgui.py --server_port=3000

在这里插入图片描述

源码地址:https://github.com/BadToBest/EchoMimic
官网:https://badtobest.github.io/echomimic.html

在这里插入图片描述

由于提供的材料中并未直接涉及有关部署EchoMimicV2的具体方法或教程[^1],这里将基于一般性的模型部署流程给出建议。对于特定于EchoMimicV2的部署,通常会遵循如下几个方面: ### 部署环境准备 安装必要的依赖库以及配置运行环境是第一步操作。这可能涉及到Python版本的选择、虚拟环境的创建以及其他第三方库的安装。 ```bash conda create -n echomimicv2 python=3.9 conda activate echomimicv2 pip install -r requirements.txt ``` 上述命令假设存在`requirements.txt`文件来指定所有必需的包及其版本号。 ### 数据集与预训练模型获取 下载官方提供的数据集和预训练权重文件,并将其放置到合适的位置以便后续加载使用。这部分具体取决于项目文档中的说明指引。 ### 修改配置参数 依据实际应用场景调整部分超参数设定,比如输入分辨率大小、批处理数量等选项,在某些情况下还需要修改路径指向以适应本地存储结构。 ### 启动服务接口 编写简单的API服务器脚本来接收外部请求并返回预测结果。可以利用Flask框架快速搭建RESTful API端点实现这一功能。 ```python from flask import Flask, request, jsonify import torch from model import EchoMimicV2Model # 假设这是定义好的网络架构类名 app = Flask(__name__) device = 'cuda' if torch.cuda.is_available() else 'cpu' model = EchoMimicV2Model().to(device) model.load_state_dict(torch.load('path_to_model_weights')) model.eval() @app.route('/predict', methods=['POST']) def predict(): data = request.json['data'] with torch.no_grad(): output = model(data).cpu().numpy() return jsonify({'result': output.tolist()}) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000) ``` 这段代码展示了如何构建一个基本的服务入口用于在线推理任务执行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不会代码的小林

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值