更新中 ... ...
引言
R语言基础包datasets
里自带了一部分数据集合,为了大家更好的使用这些数据,这里从原子向量、因子、矩阵、数组、类矩阵、数据框、类数据框、列表、时间序列
等9个方面做一些总结和介绍。大家可以通过data()
命令获取全部的数据集列表。
根据维度进行简单的分类如下表。
维度 | 数据类型 |
---|---|
1维 | 原子向量(1)、因子(2)、列表(7)、一维时间序列(8.1) |
2维 | 矩阵(3)、类矩阵(4)、数据框(5)、类数据框(6)、多维时间序列(8.2) |
n维 | 数组(9) |
注:括号中的数字是文章对应的章节,方便查找索引用的。类矩阵虽然是放在矩阵列里,但是实际没有维度信息。
常用数据整理(仅代表个人观点,如有其他见解欢迎留言):
数据名称(R语言) | 数据类型 | 维度 | 章节 | 常用模型 | 推荐星级 |
---|---|---|---|---|---|
crimta | 矩阵、table | 二维(42x22) | 3.8 | 双指标分布可视化 | 三星 |
Harman23.cor | 类矩阵、list | 无 | 4.2 | 相关系数图 | 三星 |
airquality | 数据框 | 二维(153*6) | 5.1 | 可视化、回归 | 四星 |
anscombe | 数据框 | 二维(11*6) | 5.2 | 回归、统计分析 | 五星 |
chickwts | 数据框 | 二维(71*2) | 5.8 | 一元回归 | 四星 |
airmiles | 时间序列 | 无 | 8.1.1 | 一元时间序列 | 四星 |
EuStockMarkets | 时间序列 | 二维(1860*4) | 8.2.1 | 多元时间序列 | 五星 |
iris3 | 数组 | 三维(50x4x3) | 9.1 | 分类模型 | 五星 |
Titanic | 数组、table | 四维(4x2x2x2) | 9.2 | 高维数据索引 | 四星 |
HairEyeColor | 数组、table | 三维(4x2x2) | 9.4 | 高维数据索引 | 四星 |
1、原子向量 + 条形图(一维)
1.1 欧元货币换算率
数据名字:euro(R语言)
数据名称:欧元货币换算率
数据长度:11
数据示例:
> euro
ATS BEF DEM ESP FIM FRF
13.760300 40.339900 1.955830 166.386000 5.945730 6.559570
IEP ITL LUF NLG PTE
0.787564 1936.270000 40.339900 2.203710 200.482000
> str(euro)
Named num [1:11] 13.76 40.34 1.96 166.39 5.95 ...
- attr(*, "names")= chr [1:11] "ATS" "BEF" "DEM" "ESP" ...
1.2 美国城市年降水量
数据名字:precip(R语言)
数据名称: 美国城市年降水量
数据长度:70
数据示例:
> precip
Mobile Juneau Phoenix
67.0 54.7 7.0
Little Rock Los Angeles Sacramento
48.5 14.0 17.2
San Francisco Denver Hartford
20.7 13.0 43.4
Wilmington Washington Jacksonville
40.2 38.9 54.5
Miami Atlanta Honolulu
59.8 48.3 22.9
Boise Chicago Peoria
11.5 34.4 35.1
Indianapolis Des Moines Wichita
38.7 30.8 30.6
Louisville New Orleans Portland
43.1 56.8 40.8
Baltimore Boston Detroit
41.8 42.5 31.0
Sault Ste. Marie Duluth Minneapolis/St Paul
31.7 30.2 25.9
Jackson Kansas City St Louis
49.2 37.0 35.9
Great Falls Omaha Reno
15.0 30.2 7.2
Concord Atlantic City Albuquerque
36.2 45.5 7.8
Albany Buffalo New York
33.4 36.1 40.2
Charlotte Raleigh Bismark
42.7 42.5 16.2
Cincinnati Cleveland Columbus
39.0 35.0 37.0
Oklahoma City Portland Philadelphia
31.4 37.6 39.9
Pittsburg Providence Columbia
36.2 42.8 46.4
Sioux Falls Memphis Nashville
24.7 49.1 46.0
Dallas El Paso Houston
35.9 7.8 48.2
Salt Lake City Burlington Norfolk
15.2 32.5 44.7
Richmond Seattle Tacoma Spokane
42.6 38.8 17.4
Charleston Milwaukee Cheyenne
40.8 29.1 14.6
San Juan
59.2
> str(precip)
Named num [1:70] 67 54.7 7 48.5 14 17.2 20.7 13 43.4 40.2 ...
- attr(*, "names")= chr [1:70] "Mobile" "Juneau" "Phoenix" "Little Rock" ...
1.3 北美主要河流的长度(不含河流名字)
描述:This data set gives the lengths (in miles) of 141 “major” rivers in North America, as compiled by the US Geological Survey.
数据名字:rivers(R语言)
数据名称: 北美主要河流的长度
数据长度:141
数据示例:
> rivers
[1] 735 320 325 392 524 450 1459 135 465 600 330 336 280 315
[15] 870 906 202 329 290 1000 600 505 1450 840 1243 890 350 407
[29] 286 280 525 720 390 250 327 230 265 850 210 630 260 230
[43] 360 730 600 306 390 420 291 710 340 217 281 352 259 250
[57] 470 680 570 350 300 560 900 625 332 2348 1171 3710 2315 2533
[71] 780 280 410 460 260 255 431 350 760 618 338 981 1306 500
[85] 696 605 250 411 1054 735 233 435 490 310 460 383 375 1270
[99] 545 445 1885 380 300 380 377 425 276 210 800 420 350 360
[113] 538 1100 1205 314 237 610 360 540 1038 424 310 300 444 301
[127] 268 620 215 652 900 525 246 360 529 500 720 270 430 671
[141] 1770
> str(rivers)
num [1:141] 735 320 325 392 524 ...
1.4美国50个州信息(缩写、名称、全称)
数据名字:state.abb、state.area、state.name (R语言)
数据名称: 北美主要河流的长度
数据长度:50
数据示例:
> state.abb # 缩写
[1] "AL" "AK" "AZ" "AR" "CA" "CO" "CT" "DE" "FL" "GA" "HI" "ID" "IL" "IN"
[15] "IA" "KS" "KY" "LA" "ME" "MD" "MA" "MI" "MN" "MS" "MO" "MT" "NE" "NV"
[29] "NH" "NJ" "NM" "NY" "NC" "ND" "OH" "OK" "OR" "PA" "RI" "SC" "SD" "TN"
[43] "TX" "UT" "VT" "VA" "WA" "WV" "WI" "WY"
> state.area # 面积
[1] 51609 589757 113909 53104 158693 104247 5009 2057 58560 58876
[11] 6450 83557 56400 36291 56290 82264 40395 48523 33215 10577
[21] 8257 58216 84068 47716 69686 147138 77227 110540 9304 7836
[31] 121666 49576 52586 70665 41222 69919 96981 45333 1214 31055
[41] 77047 42244 267339 84916 9609 40815 68192 24181 56154 97914
> state.name # 全称
[1] "Alabama" "Alaska" "Arizona" "Arkansas"
[5] "California" "Colorado" "Connecticut" "Delaware"
[9] "Florida" "Georgia" "Hawaii" "Idaho"
[13] "Illinois" "Indiana" "Iowa" "Kansas"
[17] "Kentucky" "Louisiana" "Maine" "Maryland"
[21] "Massachusetts" "Michigan" "Minnesota" "Mississippi"
[25] "Missouri" "Montana" "Nebraska" "Nevada"
[29] "New Hampshire" "New Jersey" "New Mexico" "New York"
[33] "North Carolina" "North Dakota" "Ohio" "Oklahoma"
[37] "Oregon" "Pennsylvania" "Rhode Island" "South Carolina"
[41] "South Dakota" "Tennessee" "Texas" "Utah"
[45] "Vermont" "Virginia" "Washington" "West Virginia"
[49] "Wisconsin" "Wyoming"
2、因子 + 散点图
2.1美国50个州信息(土地类型、地理方位)
一共就两个就不设置二级目录了。每次类别的名称是1.4
部分的名称。
数据长度:50
数据名称:state.division 以及 state.region (R语言)
> state.division # 50个州的分类,9个水平
[1] East South Central Pacific Mountain
[4] West South Central Pacific Mountain
[7] New England South Atlantic South Atlantic
[10] South Atlantic Pacific Mountain
[13] East North Central East North Central West North Central
[16] West North Central East South Central West South Central
[19] New England South Atlantic New England
[22] East North Central West North Central East South Central
[25] West North Central Mountain West North Central
[28] Mountain New England Middle Atlantic
[31] Mountain Middle Atlantic South Atlantic
[34] West North Central East North Central West South Central
[37] Pacific Middle Atlantic New England
[40] South Atlantic West North Central East South Central
[43] West South Central Mountain New England
[46] South Atlantic Pacific South Atlantic
[49] East North Central Mountain
9 Levels: New England Middle Atlantic South Atlantic ... Pacific
> str(state.division)
Factor w/ 9 levels "New England",..: 4 9 8 5 9 8 1 3 3 3 ...
> state.region # 50个州的地理分类,4个水平
[1] South West West South West
[6] West Northeast South South South
[11] West West North Central North Central North Central
[16] North Central South South Northeast South
[21] Northeast North Central North Central South North Central
[26] West North Central West Northeast Northeast
[31] West Northeast South North Central North Central
[36] South West Northeast Northeast South
[41] North Central South South West Northeast
[46] South West South North Central West
Levels: Northeast South North Central West
> str(state.region)
Factor w/ 4 levels "Northeast","South",..: 2 4 4 2 4 4 1 2 2 2 ...
就不讲作图思路了,粘一下代码把。
ggplot(data = data.frame(division = state.division,
region= state.region), aes(x = division, y = region)) +
geom_point()
3、矩阵
3.1 11种汇率矩阵
数据维度:11*11
数据名称:euro.cross (R语言)
数据类型:矩阵
数据展示:
> euro.cross
ATS BEF DEM ESP FIM FRF IEP ITL LUF NLG PTE
ATS 1.000000000 2.93161486 0.142135709 12.0917422 0.432093050 0.476702543 0.0572345080 140.714229 2.93161486 0.160149851 14.5695951
BEF 0.341108927 1.00000000 0.048483759 4.1246012 0.147390797 0.162607493 0.0195232016 47.998880 1.00000000 0.054628544 4.9698190
DEM 7.035529673 20.62546336 1.000000000 85.0718109 3.040003477 3.353854885 0.4026750791 989.999131 20.62546336 1.126739032 102.5048189
ESP 0.082701069 0.24244768 0.011754775 1.0000000 0.035734557 0.039423810 0.0047333550 11.637217 0.24244768 0.013244564 1.2049211
FIM 2.314316324 6.78468413 0.328946992 27.9841163 1.000000000 1.103240477 0.1324587561 325.657236 6.78468413 0.370637415 33.7186519
FRF 2.097744212 6.14977811 0.298164361 25.3653822 0.906420695 1.000000000 0.1200633578 295.182459 6.14977811 0.335953424 30.5632839
IEP 17.471976881 51.22110711 2.483391826 211.2666399 7.549519785 8.328935807 1.0000000000 2458.555749 51.22110711 2.798134501 254.5596294
ITL 0.007106602 0.02083382 0.001010102 0.0859312 0.003070713 0.003387735 0.0004067429 1.000000 0.02083382 0.001138121 0.1035403
LUF 0.341108927 1.00000000 0.048483759 4.1246012 0.147390797 0.162607493 0.0195232016 47.998880 1.00000000 0.054628544 4.9698190
NLG 6.244151907 18.30544854 0.887516960 75.5026750 2.698054644 2.976603092 0.3573809621 878.641019 18.30544854 1.000000000 90.9747653
PTE 0.068636087 0.20121457 0.009755639 0.8299299 0.029657176 0.032718997 0.0039283527 9.658074 0.20121457 0.010992059 1.0000000
> summary(euro.cross)
ATS BEF DEM ESP FIM FRF IEP ITL
Min. : 0.007107 Min. : 0.02083 Min. :0.00101 Min. : 0.08593 Min. :0.003071 Min. :0.003388 Min. :0.0004067 Min. : 1.00
1st Qu.: 0.211905 1st Qu.: 0.62122 1st Qu.:0.03012 1st Qu.: 2.56230 1st Qu.:0.091563 1st Qu.:0.101016 1st Qu.:0.0121283 1st Qu.: 29.82
Median : 1.000000 Median : 2.93161 Median :0.14214 Median : 12.09174 Median :0.432093 Median :0.476703 Median :0.0572345 Median : 140.71
Mean : 3.364035 Mean : 9.86205 Mean :0.47815 Mean : 40.67704 Mean :1.453576 Mean :1.603644 Mean :0.1925389 Mean : 473.37
3rd Qu.: 4.279234 3rd Qu.:12.54507 3rd Qu.:0.60823 3rd Qu.: 51.74340 3rd Qu.:1.849027 3rd Qu.:2.039922 3rd Qu.:0.2449199 3rd Qu.: 602.15
Max. :17.471977 Max. :51.22111 Max. :2.48339 Max. :211.26664 Max. :7.549520 Max. :8.328936 Max. :1.0000000 Max. :2458.56
LUF NLG PTE
Min. : 0.02083 Min. :0.001138 Min. : 0.1035
1st Qu.: 0.62122 1st Qu.:0.033937 1st Qu.: 3.0874
Median : 2.93161 Median :0.160150 Median : 14.5696
Mean : 9.86205 Mean :0.538750 Mean : 49.0126
3rd Qu.:12.54507 3rd Qu.:0.685319 3rd Qu.: 62.3467
Max. :51.22111 Max. :2.798135 Max. :254.5596
> class(euro.cross)
[1] "matrix"
> mode(euro.cross)
[1] "numeric"
3.2 季度收入自变量(4个)
数据维度:39*4
数据名称:freeny.x(R语言)
数据类型:矩阵
部分数据展示:
> head(freeny.x)
lag quarterly revenue price index income level market potential
[1,] 8.79636 4.70997 5.82110 12.9699
[2,] 8.79236 4.70217 5.82558 12.9733
[3,] 8.79137 4.68944 5.83112 12.9774
[4,] 8.81486 4.68558 5.84046 12.9806
[5,] 8.81301 4.64019 5.85036 12.9831
[6,] 8.90751 4.62553 5.86464 12.9854
> str(freeny.x)
num [1:39, 1:4] 8.8 8.79 8.79 8.81 8.81 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:4] "lag quarterly revenue" "price index" "income level" "market potential"
> dim(freeny.x )
[1] 39 4
3.3 50个州的八个指标
数据维度:50*8
数据名称:state.x77(R语言)
数据类型:矩阵
部分数据展示:
> head(state.x77)
Population Income Illiteracy Life Exp Murder HS Grad Frost Area
Alabama 3615 3624 2.1 69.05 15.1 41.3 20 50708
Alaska 365 6315 1.5 69.31 11.3 66.7 152 566432
Arizona 2212 4530 1.8 70.55 7.8 58.1 15 113417
Arkansas 2110 3378 1.9 70.66 10.1 39.9 65 51945
California 21198 5114 1.1 71.71 10.3 62.6 20 156361
Colorado 2541 4884 0.7 72.06 6.8 63.9 166 103766
> summary(state.x77)
Population Income Illiteracy Life Exp Murder HS Grad Frost Area
Min. : 365 Min. :3098 Min. :0.500 Min. :67.96 Min. : 1.400 Min. :37.80 Min. : 0.00 Min. : 1049
1st Qu.: 1080 1st Qu.:3993 1st Qu.:0.625 1st Qu.:70.12 1st Qu.: 4.350 1st Qu.:48.05 1st Qu.: 66.25 1st Qu.: 36985
Median : 2838 Median :4519 Median :0.950 Median :70.67 Median : 6.850 Median :53.25 Median :114.50 Median : 54277
Mean : 4246 Mean :4436 Mean :1.170 Mean :70.88 Mean : 7.378 Mean :53.11 Mean :104.46 Mean : 70736
3rd Qu.: 4968 3rd Qu.:4814 3rd Qu.:1.575 3rd Qu.:71.89 3rd Qu.:10.675 3rd Qu.:59.15 3rd Qu.:139.75 3rd Qu.: 81163
Max. :21198 Max. :6315 Max. :2.800 Max. :73.60 Max. :15.100 Max. :67.30 Max. :188.00 Max. :566432
> str(state.x77)
num [1:50, 1:8] 3615 365 2212 2110 21198 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" ...
..$ : chr [1:8] "Population" "Income" "Illiteracy" "Life Exp" ...
> dim(state.x77)
[1] 50 8
3.4 5年不同领域的指标
数据维度:5*5
数据名称:USPersonalExpenditure(R语言)
数据类型:矩阵
部分数据展示:
> USPersonalExpenditure
1940 1945 1950 1955 1960
Food and Tobacco 22.200 44.500 59.60 73.2 86.80
Household Operation 10.500 15.500 29.00 36.5 46.20
Medical and Health 3.530 5.760 9.71 14.0 21.10
Personal Care 1.040 1.980 2.45 3.4 5.40
Private Education 0.341 0.974 1.80 2.6 3.64
> summary(USPersonalExpenditure)
1940 1945 1950 1955 1960
Min. : 0.341 Min. : 0.974 Min. : 1.80 Min. : 2.60 Min. : 3.64
1st Qu.: 1.040 1st Qu.: 1.980 1st Qu.: 2.45 1st Qu.: 3.40 1st Qu.: 5.40
Median : 3.530 Median : 5.760 Median : 9.71 Median :14.00 Median :21.10
Mean : 7.522 Mean :13.743 Mean :20.51 Mean :25.94 Mean :32.63
3rd Qu.:10.500 3rd Qu.:15.500 3rd Qu.:29.00 3rd Qu.:36.50 3rd Qu.:46.20
Max. :22.200 Max. :44.500 Max. :59.60 Max. :73.20 Max. :86.80
> str(USPersonalExpenditure)
num [1:5, 1:5] 22.2 10.5 3.53 1.04 0.341 44.5 15.5 5.76 1.98 0.974 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:5] "Food and Tobacco" "Household Operation" "Medical and Health" "Personal Care" ...
..$ : chr [1:5] "1940" "1945" "1950" "1955" ...
> dim(USPersonalExpenditure)
[1] 5 5
3.5 1940年不同年龄个体的死亡数(每千人)
数据维度:5*4
数据名称:VADeaths(R语言)
数据类型:矩阵
部分数据展示:
> head(VADeaths)
Rural Male Rural Female Urban Male Urban Female
50-54 11.7 8.7 15.4 8.4
55-59 18.1 11.7 24.3 13.6
60-64 26.9 20.3 37.0 19.3
65-69 41.0 30.9 54.6 35.1
70-74 66.0 54.3 71.1 50.0
> summary(VADeaths)
Rural Male Rural Female Urban Male Urban Female
Min. :11.70 Min. : 8.70 Min. :15.40 Min. : 8.40
1st Qu.:18.10 1st Qu.:11.70 1st Qu.:24.30 1st Qu.:13.60
Median :26.90 Median :20.30 Median :37.00 Median :19.30
Mean :32.74 Mean :25.18 Mean :40.48 Mean :25.28
3rd Qu.:41.00 3rd Qu.:30.90 3rd Qu.:54.60 3rd Qu.:35.10
Max. :66.00 Max. :54.30 Max. :71.10 Max. :50.00
> str(VADeaths)
num [1:5, 1:4] 11.7 18.1 26.9 41 66 8.7 11.7 20.3 30.9 54.3 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:5] "50-54" "55-59" "60-64" "65-69" ...
..$ : chr [1:4] "Rural Male" "Rural Female" "Urban Male" "Urban Female"
> dim(VADeaths)
[1] 5 4
> class(VADeaths)
[1] "matrix"
3.6 某火山区的地理信息
数据维度:87*61
数据名称:volcano(R语言)
数据类型:矩阵
部分数据展示:
> head(volcano)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26] [,27] [,28]
[1,] 100 100 101 101 101 101 101 100 100 100 101 101 102 102 102 102 103 104 103 102 101 101 102 103 104 104 105 107
[2,] 101 101 102 102 102 102 102 101 101 101 102 102 103 103 103 103 104 105 104 103 102 102 103 105 106 106 107 109
[3,] 102 102 103 103 103 103 103 102 102 102 103 103 104 104 104 104 105 106 105 104 104 105 106 107 108 110 111 113
[4,] 103 103 104 104 104 104 104 103 103 103 103 104 104 104 105 105 106 107 106 106 106 107 108 110 111 114 117 118
[5,] 104 104 105 105 105 105 105 104 104 103 104 104 105 105 105 106 107 108 108 108 109 110 112 114 115 118 121 122
[6,] 105 105 105 106 106 106 106 105 105 104 104 105 105 106 106 107 109 110 110 112 113 115 116 118 119 121 124 126
[,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50] [,51] [,52] [,53] [,54] [,55]
[1,] 107 107 108 108 110 110 110 110 110 110 110 110 108 108 108 107 107 108 108 108 108 108 107 107 107 107 106
[2,] 110 110 110 110 111 112 113 114 116 115 114 112 110 110 110 109 108 109 109 109 109 108 108 108 108 107 107
[3,] 114 115 114 115 116 118 119 119 121 121 120 118 116 114 112 111 110 110 110 110 109 109 109 109 108 108 107
[4,] 117 119 120 121 122 124 125 126 127 127 126 124 122 120 117 116 113 111 110 110 110 109 109 109 109 108 108
[5,] 121 123 128 131 129 130 131 131 132 132 131 130 128 126 122 119 115 114 112 110 110 110 110 110 109 109 108
[6,] 126 129 134 137 137 136 136 135 136 136 136 135 133 129 126 122 118 116 115 113 111 110 110 110 110 109 108
[,56] [,57] [,58] [,59] [,60] [,61]
[1,] 106 105 105 104 104 103
[2,] 106 106 105 105 104 104
[3,] 107 106 106 105 105 104
[4,] 107 107 106 106 105 105
[5,] 107 107 107 106 106 105
[6,] 108 108 107 107 106 106
> str(volcano)
num [1:87, 1:61] 100 101 102 103 104 105 105 106 107 108 ...
> dim(volcano)
[1] 87 61
> class(volcano)
[1] "matrix"
3.7 7地区在7年中的电话数
数据维度:7*7
数据名称:WorldPhones(R语言)
数据类型:矩阵
部分数据展示:
> head(WorldPhones )
N.Amer Europe Asia S.Amer Oceania Africa Mid.Amer
1951 45939 21574 2876 1815 1646 89 555
1956 60423 29990 4708 2568 2366 1411 733
1957 64721 32510 5230 2695 2526 1546 773
1958 68484 35218 6662 2845 2691 1663 836
1959 71799 37598 6856 3000 2868 1769 911
1960 76036 40341 8220 3145 3054 1905 1008
> summary(WorldPhones )
N.Amer Europe Asia S.Amer Oceania Africa Mid.Amer
Min. :45939 Min. :21574 Min. :2876 Min. :1815 Min. :1646 Min. : 89 Min. : 555.0
1st Qu.:62572 1st Qu.:31250 1st Qu.:4969 1st Qu.:2632 1st Qu.:2446 1st Qu.:1478 1st Qu.: 753.0
Median :68484 Median :35218 Median :6662 Median :2845 Median :2691 Median :1663 Median : 836.0
Mean :66748 Mean :34343 Mean :6229 Mean :2772 Mean :2625 Mean :1484 Mean : 841.7
3rd Qu.:73918 3rd Qu.:38970 3rd Qu.:7538 3rd Qu.:3072 3rd Qu.:2961 3rd Qu.:1837 3rd Qu.: 959.5
Max. :79831 Max. :43173 Max. :9053 Max. :3338 Max. :3224 Max. :2005 Max. :1076.0
> str(WorldPhones )
num [1:7, 1:7] 45939 60423 64721 68484 71799 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:7] "1951" "1956" "1957" "1958" ...
..$ : chr [1:7] "N.Amer" "Europe" "Asia" "S.Amer" ...
> dim(WorldPhones )
[1] 7 7
> class(WorldPhones )
[1] "matrix"
3.8 3000个男性左手中指长度和身高关系
数据维度:42*22
数据名称:crimtab(R语言)
数据类型:矩阵、table
部分数据展示:
> sum(crimtab)
[1] 3000
> crimtab
142.24 144.78 147.32 149.86 152.4 154.94 157.48 160.02 162.56 165.1 167.64 170.18 172.72 175.26 177.8 180.34 182.88 185.42 187.96 190.5 193.04 195.58
9.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9.5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9.8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9.9 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 1 0 0 1 2 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
10.1 0 0 0 1 3 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
10.2 0 0 2 2 2 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
10.3 0 1 1 3 2 2 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10.4 0 0 1 1 2 3 3 4 3 3 0 0 0 0 0 0 0 0 0 0 0 0
10.5 0 0 0 1 3 7 6 4 3 1 3 1 0 1 0 0 0 0 0 0 0 0
10.6 0 0 0 1 4 5 9 14 6 3 1 0 0 1 0 0 0 0 0 0 0 0
10.7 0 0 1 2 4 9 14 16 15 7 3 1 2 0 0 0 0 0 0 0 0 0
10.8 0 0 0 2 5 6 14 27 10 7 1 2 1 0 0 0 0 0 0 0 0 0
10.9 0 0 0 0 2 6 14 24 27 14 10 4 1 0 0 0 0 0 0 0 0 0
11 0 0 0 2 6 12 15 31 37 27 17 10 6 0 0 0 0 0 0 0 0 0
11.1 0 0 0 3 3 12 22 26 24 26 24 7 4 1 0 0 0 0 0 0 0 0
11.2 0 0 0 3 2 7 21 30 38 29 27 20 4 1 0 0 0 0 0 0 0 1
11.3 0 0 0 1 0 5 10 24 26 39 26 24 7 2 0 0 0 0 0 0 0 0
11.4 0 0 0 0 3 4 9 29 56 58 26 22 10 11 0 0 0 0 0 0 0 0
11.5 0 0 0 0 0 5 11 17 33 57 38 34 25 11 2 0 0 0 0 0 0 0
11.6 0 0 0 0 2 1 4 13 37 39 48 38 27 12 2 2 0 1 0 0 0 0
11.7 0 0 0 0 0 2 9 17 30 37 48 45 24 9 9 2 0 0 0 0 0 0
11.8 0 0 0 0 1 0 2 11 15 35 41 34 29 10 5 1 0 0 0 0 0 0
11.9 0 0 0 0 1 1 2 12 10 27 32 35 19 10 9 3 1 0 0 0 0 0
12 0 0 0 0 0 0 1 4 8 19 42 39 22 16 8 2 2 0 0 0 0 0
12.1 0 0 0 0 0 0 0 2 4 13 22 28 15 27 10 4 1 0 0 0 0 0
12.2 0 0 0 0 0 0 1 2 5 6 23 17 16 11 8 1 1 0 0 0 0 0
12.3 0 0 0 0 0 0 0 0 4 8 10 13 20 23 6 5 0 0 0 0 0 0
12.4 0 0 0 0 0 0 1 1 1 2 7 12 4 7 7 1 0 0 1 0 0 0
12.5 0 0 0 0 0 0 0 1 0 1 3 12 11 8 6 8 0 2 0 0 0 0
12.6 0 0 0 0 0 0 0 0 0 1 0 3 5 7 8 6 3 1 1 0 0 0
12.7 0 0 0 0 0 0 0 0 0 1 1 7 5 5 8 2 2 0 0 0 0 0
12.8 0 0 0 0 0 0 0 0 0 0 1 2 3 1 8 5 3 1 1 0 0 0
12.9 0 0 0 0 0 0 0 0 0 0 0 1 2 2 0 1 1 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 3 0 1 0 1 0 2 1 0 0 0 0
13.1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
13.2 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 3 0 0 0 0 0 0
13.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
13.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
> str(crimtab)
'table' int [1:42, 1:22] 0 0 0 0 0 0 1 0 0 0 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:42] "9.4" "9.5" "9.6" "9.7" ...
..$ : chr [1:22] "142.24" "144.78" "147.32" "149.86" ...
> dim(crimtab)
[1] 42 22
> class(crimtab)
[1] "table"
3.9 英国男性父子职业联系
数据维度:8*8
数据名称:occupationalStatus(R语言)
数据类型:矩阵、table
部分数据展示:
> occupationalStatus
destination
origin 1 2 3 4 5 6 7 8
1 50 19 26 8 7 11 6 2
2 16 40 34 18 11 20 8 3
3 12 35 65 66 35 88 23 21
4 11 20 58 110 40 183 64 32
5 2 8 12 23 25 46 28 12
6 12 28 102 162 90 554 230 177
7 0 6 19 40 21 158 143 71
8 0 3 14 32 15 126 91 106
> summary(occupationalStatus)
Number of cases in table: 3498
Number of factors: 2
Test for independence of all factors:
Chisq = 1416, df = 49, p-value = 2.519e-264
Chi-squared approximation may be incorrect
> str(occupationalStatus)
'table' int [1:8, 1:8] 50 16 12 11 2 12 0 0 19 40 ...
- attr(*, "dimnames")=List of 2
..$ origin : chr [1:8] "1" "2" "3" "4" ...
..$ destination: chr [1:8] "1" "2" "3" "4" ...
> dim(occupationalStatus)
[1] 8 8
> class(occupationalStatus)
[1] "table"
4、类矩阵
4.1 欧洲12个城市的距离矩阵(下三角)
数据维度:无
数据名称:eurodist(R语言)
数据类型:dist
数据展示:
> eurodist
Athens Barcelona Brussels Calais Cherbourg Cologne Copenhagen Geneva Gibraltar Hamburg Hook of Holland Lisbon Lyons Madrid Marseilles Milan Munich Paris Rome Stockholm
Barcelona 3313
Brussels 2963 1318
Calais 3175 1326 204
Cherbourg 3339 1294 583 460
Cologne 2762 1498 206 409 785
Copenhagen 3276 2218 966 1136 1545 760
Geneva 2610 803 677 747 853 1662 1418
Gibraltar 4485 1172 2256 2224 2047 2436 3196 1975
Hamburg 2977 2018 597 714 1115 460 460 1118 2897
Hook of Holland 3030 1490 172 330 731 269 269 895 2428 550
Lisbon 4532 1305 2084 2052 1827 2290 2971 1936 676 2671 2280
Lyons 2753 645 690 739 789 714 1458 158 1817 1159 863 1178
Madrid 3949 636 1558 1550 1347 1764 2498 1439 698 2198 1730 668 1281
Marseilles 2865 521 1011 1059 1101 1035 1778 425 1693 1479 1183 1762 320 1157
Milan 2282 1014 925 1077 1209 911 1537 328 2185 1238 1098 2250 328 1724 618
Munich 2179 1365 747 977 1160 583 1104 591 2565 805 851 2507 724 2010 1109 331
Paris 3000 1033 285 280 340 465 1176 513 1971 877 457 1799 471 1273 792 856 821
Rome 817 1460 1511 1662 1794 1497 2050 995 2631 1751 1683 2700 1048 2097 1011 586 946 1476
Stockholm 3927 2868 1616 1786 2196 1403 650 2068 3886 949 1500 3231 2108 3188 2428 2187 1754 1827 2707
Vienna 1991 1802 1175 1381 1588 937 1455 1019 2974 1155 1205 2937 1157 2409 1363 898 428 1249 1209 2105
> summary(eurodist)
Min. 1st Qu. Median Mean 3rd Qu. Max.
158 808 1312 1505 2064 4532
> str(eurodist)
'dist' num [1:210] 3313 2963 3175 3339 2762 ...
- attr(*, "Size")= num 21
- attr(*, "Labels")= chr [1:21] "Athens" "Barcelona" "Brussels" "Calais" ...
> dim(eurodist)
NULL
> class(eurodist)
[1] "dist"
4.2 305个女孩八个形态指标的相关系数矩阵
数据维度:无
数据名称:Harman23.cor(R语言)
数据类型:list
数据展示:
> Harman23.cor
$cov
height arm.span forearm lower.leg weight bitro.diameter chest.girth chest.width
height 1.000 0.846 0.805 0.859 0.473 0.398 0.301 0.382
arm.span 0.846 1.000 0.881 0.826 0.376 0.326 0.277 0.415
forearm 0.805 0.881 1.000 0.801 0.380 0.319 0.237 0.345
lower.leg 0.859 0.826 0.801 1.000 0.436 0.329 0.327 0.365
weight 0.473 0.376 0.380 0.436 1.000 0.762 0.730 0.629
bitro.diameter 0.398 0.326 0.319 0.329 0.762 1.000 0.583 0.577
chest.girth 0.301 0.277 0.237 0.327 0.730 0.583 1.000 0.539
chest.width 0.382 0.415 0.345 0.365 0.629 0.577 0.539 1.000
$center
[1] 0 0 0 0 0 0 0 0
$n.obs
[1] 305
> summary(Harman23.cor)
Length Class Mode
cov 64 -none- numeric
center 8 -none- numeric
n.obs 1 -none- numeric
> str(Harman23.cor)
List of 3
$ cov : num [1:8, 1:8] 1 0.846 0.805 0.859 0.473 0.398 0.301 0.382 0.846 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:8] "height" "arm.span" "forearm" "lower.leg" ...
.. ..$ : chr [1:8] "height" "arm.span" "forearm" "lower.leg" ...
$ center: num [1:8] 0 0 0 0 0 0 0 0
$ n.obs : num 305
> dim(Harman23.cor)
NULL
> class(Harman23.cor)
[1] "list"
4.3 145个儿童24个心理指标相关系数矩阵
数据维度:无
数据名称:Harman74.cor(R语言)
数据类型:list
数据展示:
> Harman74.cor
$cov
VisualPerception Cubes PaperFormBoard Flags GeneralInformation PargraphComprehension SentenceCompletion WordClassification WordMeaning Addition Code CountingDots StraightCurvedCapitals WordRecognition
VisualPerception 1.000 0.318 0.403 0.468 0.321 0.335 0.304 0.332 0.326 0.116 0.308 0.314 0.489 0.125
Cubes 0.318 1.000 0.317 0.230 0.285 0.234 0.157 0.157 0.195 0.057 0.150 0.145 0.239 0.103
PaperFormBoard 0.403 0.317 1.000 0.305 0.247 0.268 0.223 0.382 0.184 -0.075 0.091 0.140 0.321 0.177
Flags 0.468 0.230 0.305 1.000 0.227 0.327 0.335 0.391 0.325 0.099 0.110 0.160 0.327 0.066
GeneralInformation 0.321 0.285 0.247 0.227 1.000 0.622 0.656 0.578 0.723 0.311 0.344 0.215 0.344 0.280
PargraphComprehension 0.335 0.234 0.268 0.327 0.622 1.000 0.722 0.527 0.714 0.203 0.353 0.095 0.309 0.292
SentenceCompletion 0.304 0.157 0.223 0.335 0.656 0.722 1.000 0.619 0.685 0.246 0.232 0.181 0.345 0.236
WordClassification 0.332 0.157 0.382 0.391 0.578 0.527 0.619 1.000 0.532 0.285 0.300 0.271 0.395 0.252
WordMeaning 0.326 0.195 0.184 0.325 0.723 0.714 0.685 0.532 1.000 0.170 0.280 0.113 0.280 0.260
Addition 0.116 0.057 -0.075 0.099 0.311 0.203 0.246 0.285 0.170 1.000 0.484 0.585 0.408 0.172
Code 0.308 0.150 0.091 0.110 0.344 0.353 0.232 0.300 0.280 0.484 1.000 0.428 0.535 0.350
CountingDots 0.314 0.145 0.140 0.160 0.215 0.095 0.181 0.271 0.113 0.585 0.428 1.000 0.512 0.131
StraightCurvedCapitals 0.489 0.239 0.321 0.327 0.344 0.309 0.345 0.395 0.280 0.408 0.535 0.512 1.000 0.195
WordRecognition 0.125 0.103 0.177 0.066 0.280 0.292 0.236 0.252 0.260 0.172 0.350 0.131 0.195 1.000
NumberRecognition 0.238 0.131 0.065 0.127 0.229 0.251 0.172 0.175 0.248 0.154 0.240 0.173 0.139 0.370
FigureRecognition 0.414 0.272 0.263 0.322 0.187 0.291 0.180 0.296 0.242 0.124 0.314 0.119 0.281 0.412
ObjectNumber 0.176 0.005 0.177 0.187 0.208 0.273 0.228 0.255 0.274 0.289 0.362 0.278 0.194 0.341
NumberFigure 0.368 0.255 0.211 0.251 0.263 0.167 0.159 0.250 0.208 0.317 0.350 0.349 0.323 0.201
FigureWord 0.270 0.112 0.312 0.137 0.190 0.251 0.226 0.274 0.274 0.190 0.290 0.110 0.263 0.206
Deduction 0.365 0.292 0.297 0.339 0.398 0.435 0.451 0.427 0.446 0.173 0.202 0.246 0.241 0.302
NumericalPuzzles 0.369 0.306 0.165 0.349 0.318 0.263 0.314 0.362 0.266 0.405 0.399 0.355 0.425 0.183
ProblemReasoning 0.413 0.232 0.250 0.380 0.441 0.386 0.396 0.357 0.483 0.160 0.304 0.193 0.279 0.243
SeriesCompletion 0.474 0.348 0.383 0.335 0.435 0.431 0.405 0.501 0.504 0.262 0.251 0.350 0.382 0.242
ArithmeticProblems 0.282 0.211 0.203 0.248 0.420 0.433 0.437 0.388 0.424 0.531 0.412 0.414 0.358 0.304
NumberRecognition FigureRecognition ObjectNumber NumberFigure FigureWord Deduction NumericalPuzzles ProblemReasoning SeriesCompletion ArithmeticProblems
VisualPerception 0.238 0.414 0.176 0.368 0.270 0.365 0.369 0.413 0.474 0.282
Cubes 0.131 0.272 0.005 0.255 0.112 0.292 0.306 0.232 0.348 0.211
PaperFormBoard 0.065 0.263 0.177 0.211 0.312 0.297 0.165 0.250 0.383 0.203
Flags 0.127 0.322 0.187 0.251 0.137 0.339 0.349 0.380 0.335 0.248
GeneralInformation 0.229 0.187 0.208 0.263 0.190 0.398 0.318 0.441 0.435 0.420
PargraphComprehension 0.251 0.291 0.273 0.167 0.251 0.435 0.263 0.386 0.431 0.433
SentenceCompletion 0.172 0.180 0.228 0.159 0.226 0.451 0.314 0.396 0.405 0.437
WordClassification 0.175 0.296 0.255 0.250 0.274 0.427 0.362 0.357 0.501 0.388
WordMeaning 0.248 0.242 0.274 0.208 0.274 0.446 0.266 0.483 0.504 0.424
Addition 0.154 0.124 0.289 0.317 0.190 0.173 0.405 0.160 0.262 0.531
Code 0.240 0.314 0.362 0.350 0.290 0.202 0.399 0.304 0.251 0.412
CountingDots 0.173 0.119 0.278 0.349 0.110 0.246 0.355 0.193 0.350 0.414
StraightCurvedCapitals 0.139 0.281 0.194 0.323 0.263 0.241 0.425 0.279 0.382 0.358
WordRecognition 0.370 0.412 0.341 0.201 0.206 0.302 0.183 0.243 0.242 0.304
NumberRecognition 1.000 0.325 0.345 0.334 0.192 0.272 0.232 0.246 0.256 0.165
FigureRecognition 0.325 1.000 0.324 0.344 0.258 0.388 0.348 0.283 0.360 0.262
ObjectNumber 0.345 0.324 1.000 0.448 0.324 0.262 0.173 0.273 0.287 0.326
NumberFigure 0.334 0.344 0.448 1.000 0.358 0.301 0.357 0.317 0.272 0.405
FigureWord 0.192 0.258 0.324 0.358 1.000 0.167 0.331 0.342 0.303 0.374
Deduction 0.272 0.388 0.262 0.301 0.167 1.000 0.413 0.463 0.509 0.366
NumericalPuzzles 0.232 0.348 0.173 0.357 0.331 0.413 1.000 0.374 0.451 0.448
ProblemReasoning 0.246 0.283 0.273 0.317 0.342 0.463 0.374 1.000 0.503 0.375
SeriesCompletion 0.256 0.360 0.287 0.272 0.303 0.509 0.451 0.503 1.000 0.434
ArithmeticProblems 0.165 0.262 0.326 0.405 0.374 0.366 0.448 0.375 0.434 1.000
$center
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$n.obs
[1] 145
> summary(Harman74.cor)
Length Class Mode
cov 576 -none- numeric
center 24 -none- numeric
n.obs 1 -none- numeric
> str(Harman74.cor)
List of 3
$ cov : num [1:24, 1:24] 1 0.318 0.403 0.468 0.321 0.335 0.304 0.332 0.326 0.116 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
.. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
$ center: num [1:24] 0 0 0 0 0 0 0 0 0 0 ...
$ n.obs : num 145
> dim(Harman74.cor)
NULL
> class(Harman74.cor)
[1] "list"
5、数据框
5.1 空气质量
数据维度:153*6
数据名称:airquality(R语言)
数据类型:数据框
数据展示:
> head(airquality)
Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6
> summary(airquality)
Ozone Solar.R Wind Temp Month Day
Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00 Min. :5.000 Min. : 1.0
1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00 1st Qu.:6.000 1st Qu.: 8.0
Median : 31.50 Median :205.0 Median : 9.700 Median :79.00 Median :7.000 Median :16.0
Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88 Mean :6.993 Mean :15.8
3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00 3rd Qu.:8.000 3rd Qu.:23.0
Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00 Max. :9.000 Max. :31.0
NA's :37 NA's :7
> str(airquality)
'data.frame': 153 obs. of 6 variables:
$ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
$ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
$ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
$ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
$ Month : int 5 5 5 5 5 5 5 5 5 5 ...
$ Day : int 1 2 3 4 5 6 7 8 9 10 ...
> dim(airquality)
[1] 153 6
> class(airquality)
[1] "data.frame"
5.2 人工构造的回归数据
数据维度:11*6
数据名称:anscombe (R语言)
数据类型:数据框
注:比较有意思的数据集,使用这四组数据做回归和统计分析你会有意想不到的收获。
数据展示:
> head(anscombe)
x1 x2 x3 x4 y1 y2 y3 y4
1 10 10 10 8 8.04 9.14 7.46 6.58
2 8 8 8 8 6.95 8.14 6.77 5.76
3 13 13 13 8 7.58 8.74 12.74 7.71
4 9 9 9 8 8.81 8.77 7.11 8.84
5 11 11 11 8 8.33 9.26 7.81 8.47
6 14 14 14 8 9.96 8.10 8.84 7.04
> summary(anscombe)
x1 x2 x3 x4 y1 y2 y3 y4
Min. : 4.0 Min. : 4.0 Min. : 4.0 Min. : 8 Min. : 4.260 Min. :3.100 Min. : 5.39 Min. : 5.250
1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 8 1st Qu.: 6.315 1st Qu.:6.695 1st Qu.: 6.25 1st Qu.: 6.170
Median : 9.0 Median : 9.0 Median : 9.0 Median : 8 Median : 7.580 Median :8.140 Median : 7.11 Median : 7.040
Mean : 9.0 Mean : 9.0 Mean : 9.0 Mean : 9 Mean : 7.501 Mean :7.501 Mean : 7.50 Mean : 7.501
3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.: 8 3rd Qu.: 8.570 3rd Qu.:8.950 3rd Qu.: 7.98 3rd Qu.: 8.190
Max. :14.0 Max. :14.0 Max. :14.0 Max. :19 Max. :10.840 Max. :9.260 Max. :12.74 Max. :12.500
> str(anscombe)
'data.frame': 11 obs. of 8 variables:
$ x1: num 10 8 13 9 11 14 6 4 12 7 ...
$ x2: num 10 8 13 9 11 14 6 4 12 7 ...
$ x3: num 10 8 13 9 11 14 6 4 12 7 ...
$ x4: num 8 8 8 8 8 8 8 19 8 8 ...
$ y1: num 8.04 6.95 7.58 8.81 8.33 ...
$ y2: num 9.14 8.14 8.74 8.77 9.26 8.1 6.13 3.1 9.13 7.26 ...
$ y3: num 7.46 6.77 12.74 7.11 7.81 ...
$ y4: num 6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.5 5.56 7.91 ...
> dim(anscombe)
[1] 11 8
> class(anscombe)
[1] "data.frame"
5.3 地震的观测数据
数据维度:182*6
数据名称:attenu(R语言)
数据类型:数据框
数据展示:
> head(attenu)
event mag station dist accel
1 1 7.0 117 12 0.359
2 2 7.4 1083 148 0.014
3 2 7.4 1095 42 0.196
4 2 7.4 283 85 0.135
5 2 7.4 135 107 0.062
6 2 7.4 475 109 0.054
> summary(attenu)
event mag station dist accel
Min. : 1.00 Min. :5.000 117 : 5 Min. : 0.50 Min. :0.00300
1st Qu.: 9.00 1st Qu.:5.300 1028 : 4 1st Qu.: 11.32 1st Qu.:0.04425
Median :18.00 Median :6.100 113 : 4 Median : 23.40 Median :0.11300
Mean :14.74 Mean :6.084 112 : 3 Mean : 45.60 Mean :0.15422
3rd Qu.:20.00 3rd Qu.:6.600 135 : 3 3rd Qu.: 47.55 3rd Qu.:0.21925
Max. :23.00 Max. :7.700 (Other):147 Max. :370.00 Max. :0.81000
NA's : 16
> str(attenu)
'data.frame': 182 obs. of 5 variables:
$ event : num 1 2 2 2 2 2 2 2 2 2 ...
$ mag : num 7 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 ...
$ station: Factor w/ 117 levels "1008","1011",..: 24 13 15 68 39 74 22 1 8 55 ...
$ dist : num 12 148 42 85 107 109 156 224 293 359 ...
$ accel : num 0.359 0.014 0.196 0.135 0.062 0.054 0.014 0.018 0.01 0.004 ...
> dim(attenu)
[1] 182 5
> class(attenu)
[1] "data.frame"
5.4 部门的调查结果
数据维度:30*7
数据名称:attitude(R语言)
数据类型:数据框
数据展示:
> head(attitude)
rating complaints privileges learning raises critical advance
1 43 51 30 39 61 92 45
2 63 64 51 54 63 73 47
3 71 70 68 69 76 86 48
4 61 63 45 47 54 84 35
5 81 78 56 66 71 83 47
6 43 55 49 44 54 49 34
> summary(attitude)
rating complaints privileges learning raises critical advance
Min. :40.00 Min. :37.0 Min. :30.00 Min. :34.00 Min. :43.00 Min. :49.00 Min. :25.00
1st Qu.:58.75 1st Qu.:58.5 1st Qu.:45.00 1st Qu.:47.00 1st Qu.:58.25 1st Qu.:69.25 1st Qu.:35.00
Median :65.50 Median :65.0 Median :51.50 Median :56.50 Median :63.50 Median :77.50 Median :41.00
Mean :64.63 Mean :66.6 Mean :53.13 Mean :56.37 Mean :64.63 Mean :74.77 Mean :42.93
3rd Qu.:71.75 3rd Qu.:77.0 3rd Qu.:62.50 3rd Qu.:66.75 3rd Qu.:71.00 3rd Qu.:80.00 3rd Qu.:47.75
Max. :85.00 Max. :90.0 Max. :83.00 Max. :75.00 Max. :88.00 Max. :92.00 Max. :72.00
> str(attitude)
'data.frame': 30 obs. of 7 variables:
$ rating : num 43 63 71 61 81 43 58 71 72 67 ...
$ complaints: num 51 64 70 63 78 55 67 75 82 61 ...
$ privileges: num 30 51 68 45 56 49 42 50 72 45 ...
$ learning : num 39 54 69 47 66 44 56 55 67 47 ...
$ raises : num 61 63 76 54 71 54 66 70 71 62 ...
$ critical : num 92 73 86 84 83 49 68 66 83 80 ...
$ advance : num 45 47 48 35 47 34 35 41 31 41 ...
> dim(attitude)
[1] 30 7
> class(attitude)
[1] "data.frame"
5.5 两只海狸体温数据
数据维度:114x4 + 100x4
数据名称:beaver1 + beaver2(R语言)
数据类型:数据框
注意:beaver1 与 beaver2数据结构一致。
数据展示:
> head(beaver1)
day time temp activ
1 346 840 36.33 0
2 346 850 36.34 0
3 346 900 36.35 0
4 346 910 36.42 0
5 346 920 36.55 0
6 346 930 36.69 0
> summary(beaver1)
day time temp activ
Min. :346.0 Min. : 0.0 Min. :36.33 Min. :0.00000
1st Qu.:346.0 1st Qu.: 932.5 1st Qu.:36.76 1st Qu.:0.00000
Median :346.0 Median :1415.0 Median :36.87 Median :0.00000
Mean :346.2 Mean :1312.0 Mean :36.86 Mean :0.05263
3rd Qu.:346.0 3rd Qu.:1887.5 3rd Qu.:36.96 3rd Qu.:0.00000
Max. :347.0 Max. :2350.0 Max. :37.53 Max. :1.00000
> str(beaver1)
'data.frame': 114 obs. of 4 variables:
$ day : num 346 346 346 346 346 346 346 346 346 346 ...
$ time : num 840 850 900 910 920 930 940 950 1000 1010 ...
$ temp : num 36.3 36.3 36.4 36.4 36.5 ...
$ activ: num 0 0 0 0 0 0 0 0 0 0 ...
> dim(beaver1)
[1] 114 4
> class(beaver1)
[1] "data.frame"
5.6 氧的需求
数据维度:6*2
数据名称:BOD(R语言)
数据类型:数据框
数据展示:
> head(BOD)
Time demand
1 1 8.3
2 2 10.3
3 3 19.0
4 4 16.0
5 5 15.6
6 7 19.8
> summary(BOD)
Time demand
Min. :1.000 Min. : 8.30
1st Qu.:2.250 1st Qu.:11.62
Median :3.500 Median :15.80
Mean :3.667 Mean :14.83
3rd Qu.:4.750 3rd Qu.:18.25
Max. :7.000 Max. :19.80
> str(BOD)
'data.frame': 6 obs. of 2 variables:
$ Time : num 1 2 3 4 5 7
$ demand: num 8.3 10.3 19 16 15.6 19.8
- attr(*, "reference")= chr "A1.4, p. 270"
> dim(BOD)
[1] 6 2
> class(BOD)
[1] "data.frame"
5.7 汽车速度对刹车距离数据
数据维度:50*2
数据名称:cars(R语言)
数据类型:数据框
数据展示:
> head(cars)
speed dist
1 4 2
2 4 10
3 7 4
4 7 22
5 8 16
6 9 10
> summary(cars)
speed dist
Min. : 4.0 Min. : 2.00
1st Qu.:12.0 1st Qu.: 26.00
Median :15.0 Median : 36.00
Mean :15.4 Mean : 42.98
3rd Qu.:19.0 3rd Qu.: 56.00
Max. :25.0 Max. :120.00
> str(cars)
'data.frame': 50 obs. of 2 variables:
$ speed: num 4 4 7 7 8 9 10 10 10 11 ...
$ dist : num 2 10 4 22 16 10 18 26 34 17 ...
> dim(cars)
[1] 50 2
> class(cars)
[1] "data.frame"
5.8 小鸡生长速度的影响
数据维度:71*2
数据名称:chickwts(R语言)
数据类型:数据框
数据展示:
> head(chickwts)
weight feed
1 179 horsebean
2 160 horsebean
3 136 horsebean
4 227 horsebean
5 217 horsebean
6 168 horsebean
> summary(chickwts)
weight feed
Min. :108.0 casein :12
1st Qu.:204.5 horsebean:10
Median :258.0 linseed :12
Mean :261.3 meatmeal :11
3rd Qu.:323.5 soybean :14
Max. :423.0 sunflower:12
> str(chickwts)
'data.frame': 71 obs. of 2 variables:
$ weight: num 179 160 136 227 217 168 108 124 143 140 ...
$ feed : Factor w/ 6 levels "casein","horsebean",..: 2 2 2 2 2 2 2 2 2 2 ...
> dim(chickwts)
[1] 71 2
> class(chickwts)
[1] "data.frame"
5.9 食管癌病例对照研究数据
数据维度:88*5
数据名称:esoph(R语言)
数据类型:数据框
数据展示:
> head(esoph)
agegp alcgp tobgp ncases ncontrols
1 25-34 0-39g/day 0-9g/day 0 40
2 25-34 0-39g/day 10-19 0 10
3 25-34 0-39g/day 20-29 0 6
4 25-34 0-39g/day 30+ 0 5
5 25-34 40-79 0-9g/day 0 27
6 25-34 40-79 10-19 0 7
> summary(esoph)
agegp alcgp tobgp ncases ncontrols
25-34:15 0-39g/day:23 0-9g/day:24 Min. : 0.000 Min. : 1.00
35-44:15 40-79 :23 10-19 :24 1st Qu.: 0.000 1st Qu.: 3.00
45-54:16 80-119 :21 20-29 :20 Median : 1.000 Median : 6.00
55-64:16 120+ :21 30+ :20 Mean : 2.273 Mean :11.08
65-74:15 3rd Qu.: 4.000 3rd Qu.:14.00
75+ :11 Max. :17.000 Max. :60.00
> str(esoph)
'data.frame': 88 obs. of 5 variables:
$ agegp : Ord.factor w/ 6 levels "25-34"<"35-44"<..: 1 1 1 1 1 1 1 1 1 1 ...
$ alcgp : Ord.factor w/ 4 levels "0-39g/day"<"40-79"<..: 1 1 1 1 2 2 2 2 3 3 ...
$ tobgp : Ord.factor w/ 4 levels "0-9g/day"<"10-19"<..: 1 2 3 4 1 2 3 4 1 2 ...
$ ncases : num 0 0 0 0 0 0 0 0 0 0 ...
$ ncontrols: num 40 10 6 5 27 7 4 7 2 1 ...
> dim(esoph)
[1] 88 5
> class(esoph)
[1] "data.frame"
6、类数据框
6.1 饮食对鸡生长的影响
数据维度:578*4
数据名称:ChickWeight(R语言)
数据类型:类数据框
数据展示:
> head(ChickWeight)
weight Time Chick Diet
1 42 0 1 1
2 51 2 1 1
3 59 4 1 1
4 64 6 1 1
5 76 8 1 1
6 93 10 1 1
> summary(ChickWeight)
weight Time Chick Diet
Min. : 35.0 Min. : 0.00 13 : 12 1:220
1st Qu.: 63.0 1st Qu.: 4.00 9 : 12 2:120
Median :103.0 Median :10.00 20 : 12 3:120
Mean :121.8 Mean :10.72 10 : 12 4:118
3rd Qu.:163.8 3rd Qu.:16.00 17 : 12
Max. :373.0 Max. :21.00 19 : 12
(Other):506
> str(ChickWeight)
Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame': 578 obs. of 4 variables:
$ weight: num 42 51 59 64 76 93 106 125 149 171 ...
$ Time : num 0 2 4 6 8 10 12 14 16 18 ...
$ Chick : Ord.factor w/ 50 levels "18"<"16"<"15"<..: 15 15 15 15 15 15 15 15 15 15 ...
$ Diet : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "formula")=Class 'formula' language weight ~ Time | Chick
.. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
- attr(*, "outer")=Class 'formula' language ~Diet
.. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
- attr(*, "labels")=List of 2
..$ x: chr "Time"
..$ y: chr "Body weight"
- attr(*, "units")=List of 2
..$ x: chr "(days)"
..$ y: chr "(gm)"
> dim(ChickWeight)
[1] 578 4
> class(ChickWeight)
[1] "nfnGroupedData" "nfGroupedData" "groupedData" "data.frame"
7、列表
7.1 50个州中心的经度和纬度
数据维度:一维
数据名称:state.center(R语言)
数据类型:列表
部分数据展示:
> state.center
$x
[1] -86.7509 -127.2500 -111.6250 -92.2992 -119.7730 -105.5130 -72.3573 -74.9841 -81.6850 -83.3736 -126.2500 -113.9300 -89.3776 -86.0808 -93.3714 -98.1156 -84.7674
[18] -92.2724 -68.9801 -76.6459 -71.5800 -84.6870 -94.6043 -89.8065 -92.5137 -109.3200 -99.5898 -116.8510 -71.3924 -74.2336 -105.9420 -75.1449 -78.4686 -100.0990
[35] -82.5963 -97.1239 -120.0680 -77.4500 -71.1244 -80.5056 -99.7238 -86.4560 -98.7857 -111.3300 -72.5450 -78.2005 -119.7460 -80.6665 -89.9941 -107.2560
$y
[1] 32.5901 49.2500 34.2192 34.7336 36.5341 38.6777 41.5928 38.6777 27.8744 32.3329 31.7500 43.5648 40.0495 40.0495 41.9358 38.4204 37.3915 30.6181 45.6226 39.2778 42.3645
[22] 43.1361 46.3943 32.6758 38.3347 46.8230 41.3356 39.1063 43.3934 39.9637 34.4764 43.1361 35.4195 47.2517 40.2210 35.5053 43.9078 40.9069 41.5928 33.6190 44.3365 35.6767
[43] 31.3897 39.1063 44.2508 37.5630 47.4231 38.4204 44.5937 43.0504
> summary(state.center)
Length Class Mode
x 50 -none- numeric
y 50 -none- numeric
> str(state.center)
List of 2
$ x: num [1:50] -86.8 -127.2 -111.6 -92.3 -119.8 ...
$ y: num [1:50] 32.6 49.2 34.2 34.7 36.5 ...
> dim(state.center)
NULL
> class(state.center)
[1] "list"
8、时间序列
8.1 一元时间序列
8.1.1 美国年客运里程营收
数据维度:一维
数据名称:airmiles(R语言)
数据类型:时间序列
部分数据展示:
> airmiles #美国1937-1960年客运里程营收(实际售出机位乘以飞行哩数)
Time Series:
Start = 1937
End = 1960
Frequency = 1
[1] 412 480 683 1052 1385 1418 1634 2178 3362 5948 6109 5981 6753 8003 10566 12528 14760 16769 19819 22362 25340 25343 29269 30514
> class(airmiles)
[1] "ts"
8.2 多元时间序列
8.2.1 欧洲股市四个主要指标
数据维度:1860*4
数据名称:EuStockMarkets(R语言)
数据类型:多元时间序列
部分数据展示:
> head(EuStockMarkets)
DAX SMI CAC FTSE
[1,] 1628.75 1678.1 1772.8 2443.6
[2,] 1613.63 1688.5 1750.5 2460.2
[3,] 1606.51 1678.6 1718.0 2448.2
[4,] 1621.04 1684.1 1708.1 2470.4
[5,] 1618.16 1686.6 1723.1 2484.7
[6,] 1610.61 1671.6 1714.3 2466.8
> summary(EuStockMarkets)
DAX SMI CAC FTSE
Min. :1402 Min. :1587 Min. :1611 Min. :2281
1st Qu.:1744 1st Qu.:2166 1st Qu.:1875 1st Qu.:2843
Median :2141 Median :2796 Median :1992 Median :3247
Mean :2531 Mean :3376 Mean :2228 Mean :3566
3rd Qu.:2722 3rd Qu.:3812 3rd Qu.:2274 3rd Qu.:3994
Max. :6186 Max. :8412 Max. :4388 Max. :6179
> dim(EuStockMarkets)
[1] 1860 4
> class(EuStockMarkets)
[1] "mts" "ts" "matrix"
9、数组
9.1 3种鸢尾花数据(三维)
数据维度:50x4x3
数据名称:iris3(R语言)
数据类型:数组
部分数据展示:
> iris3
, , Setosa
Sepal L. Sepal W. Petal L. Petal W.
[1,] 5.1 3.5 1.4 0.2
[2,] 4.9 3.0 1.4 0.2
[3,] 4.7 3.2 1.3 0.2
[4,] 4.6 3.1 1.5 0.2
[5,] 5.0 3.6 1.4 0.2
[6,] 5.4 3.9 1.7 0.4
[7,] 4.6 3.4 1.4 0.3
[8,] 5.0 3.4 1.5 0.2
[9,] 4.4 2.9 1.4 0.2
[10,] 4.9 3.1 1.5 0.1
[11,] 5.4 3.7 1.5 0.2
[12,] 4.8 3.4 1.6 0.2
[13,] 4.8 3.0 1.4 0.1
[14,] 4.3 3.0 1.1 0.1
[15,] 5.8 4.0 1.2 0.2
[16,] 5.7 4.4 1.5 0.4
[17,] 5.4 3.9 1.3 0.4
[18,] 5.1 3.5 1.4 0.3
[19,] 5.7 3.8 1.7 0.3
[20,] 5.1 3.8 1.5 0.3
[21,] 5.4 3.4 1.7 0.2
[22,] 5.1 3.7 1.5 0.4
[23,] 4.6 3.6 1.0 0.2
[24,] 5.1 3.3 1.7 0.5
[25,] 4.8 3.4 1.9 0.2
[26,] 5.0 3.0 1.6 0.2
[27,] 5.0 3.4 1.6 0.4
[28,] 5.2 3.5 1.5 0.2
[29,] 5.2 3.4 1.4 0.2
[30,] 4.7 3.2 1.6 0.2
[31,] 4.8 3.1 1.6 0.2
[32,] 5.4 3.4 1.5 0.4
[33,] 5.2 4.1 1.5 0.1
[34,] 5.5 4.2 1.4 0.2
[35,] 4.9 3.1 1.5 0.2
[36,] 5.0 3.2 1.2 0.2
[37,] 5.5 3.5 1.3 0.2
[38,] 4.9 3.6 1.4 0.1
[39,] 4.4 3.0 1.3 0.2
[40,] 5.1 3.4 1.5 0.2
[41,] 5.0 3.5 1.3 0.3
[42,] 4.5 2.3 1.3 0.3
[43,] 4.4 3.2 1.3 0.2
[44,] 5.0 3.5 1.6 0.6
[45,] 5.1 3.8 1.9 0.4
[46,] 4.8 3.0 1.4 0.3
[47,] 5.1 3.8 1.6 0.2
[48,] 4.6 3.2 1.4 0.2
[49,] 5.3 3.7 1.5 0.2
[50,] 5.0 3.3 1.4 0.2
, , Versicolor
Sepal L. Sepal W. Petal L. Petal W.
[1,] 7.0 3.2 4.7 1.4
[2,] 6.4 3.2 4.5 1.5
[3,] 6.9 3.1 4.9 1.5
[4,] 5.5 2.3 4.0 1.3
[5,] 6.5 2.8 4.6 1.5
[6,] 5.7 2.8 4.5 1.3
[7,] 6.3 3.3 4.7 1.6
[8,] 4.9 2.4 3.3 1.0
[9,] 6.6 2.9 4.6 1.3
[10,] 5.2 2.7 3.9 1.4
[11,] 5.0 2.0 3.5 1.0
[12,] 5.9 3.0 4.2 1.5
[13,] 6.0 2.2 4.0 1.0
[14,] 6.1 2.9 4.7 1.4
[15,] 5.6 2.9 3.6 1.3
[16,] 6.7 3.1 4.4 1.4
[17,] 5.6 3.0 4.5 1.5
[18,] 5.8 2.7 4.1 1.0
[19,] 6.2 2.2 4.5 1.5
[20,] 5.6 2.5 3.9 1.1
[21,] 5.9 3.2 4.8 1.8
[22,] 6.1 2.8 4.0 1.3
[23,] 6.3 2.5 4.9 1.5
[24,] 6.1 2.8 4.7 1.2
[25,] 6.4 2.9 4.3 1.3
[26,] 6.6 3.0 4.4 1.4
[27,] 6.8 2.8 4.8 1.4
[28,] 6.7 3.0 5.0 1.7
[29,] 6.0 2.9 4.5 1.5
[30,] 5.7 2.6 3.5 1.0
[31,] 5.5 2.4 3.8 1.1
[32,] 5.5 2.4 3.7 1.0
[33,] 5.8 2.7 3.9 1.2
[34,] 6.0 2.7 5.1 1.6
[35,] 5.4 3.0 4.5 1.5
[36,] 6.0 3.4 4.5 1.6
[37,] 6.7 3.1 4.7 1.5
[38,] 6.3 2.3 4.4 1.3
[39,] 5.6 3.0 4.1 1.3
[40,] 5.5 2.5 4.0 1.3
[41,] 5.5 2.6 4.4 1.2
[42,] 6.1 3.0 4.6 1.4
[43,] 5.8 2.6 4.0 1.2
[44,] 5.0 2.3 3.3 1.0
[45,] 5.6 2.7 4.2 1.3
[46,] 5.7 3.0 4.2 1.2
[47,] 5.7 2.9 4.2 1.3
[48,] 6.2 2.9 4.3 1.3
[49,] 5.1 2.5 3.0 1.1
[50,] 5.7 2.8 4.1 1.3
, , Virginica
Sepal L. Sepal W. Petal L. Petal W.
[1,] 6.3 3.3 6.0 2.5
[2,] 5.8 2.7 5.1 1.9
[3,] 7.1 3.0 5.9 2.1
[4,] 6.3 2.9 5.6 1.8
[5,] 6.5 3.0 5.8 2.2
[6,] 7.6 3.0 6.6 2.1
[7,] 4.9 2.5 4.5 1.7
[8,] 7.3 2.9 6.3 1.8
[9,] 6.7 2.5 5.8 1.8
[10,] 7.2 3.6 6.1 2.5
[11,] 6.5 3.2 5.1 2.0
[12,] 6.4 2.7 5.3 1.9
[13,] 6.8 3.0 5.5 2.1
[14,] 5.7 2.5 5.0 2.0
[15,] 5.8 2.8 5.1 2.4
[16,] 6.4 3.2 5.3 2.3
[17,] 6.5 3.0 5.5 1.8
[18,] 7.7 3.8 6.7 2.2
[19,] 7.7 2.6 6.9 2.3
[20,] 6.0 2.2 5.0 1.5
[21,] 6.9 3.2 5.7 2.3
[22,] 5.6 2.8 4.9 2.0
[23,] 7.7 2.8 6.7 2.0
[24,] 6.3 2.7 4.9 1.8
[25,] 6.7 3.3 5.7 2.1
[26,] 7.2 3.2 6.0 1.8
[27,] 6.2 2.8 4.8 1.8
[28,] 6.1 3.0 4.9 1.8
[29,] 6.4 2.8 5.6 2.1
[30,] 7.2 3.0 5.8 1.6
[31,] 7.4 2.8 6.1 1.9
[32,] 7.9 3.8 6.4 2.0
[33,] 6.4 2.8 5.6 2.2
[34,] 6.3 2.8 5.1 1.5
[35,] 6.1 2.6 5.6 1.4
[36,] 7.7 3.0 6.1 2.3
[37,] 6.3 3.4 5.6 2.4
[38,] 6.4 3.1 5.5 1.8
[39,] 6.0 3.0 4.8 1.8
[40,] 6.9 3.1 5.4 2.1
[41,] 6.7 3.1 5.6 2.4
[42,] 6.9 3.1 5.1 2.3
[43,] 5.8 2.7 5.1 1.9
[44,] 6.8 3.2 5.9 2.3
[45,] 6.7 3.3 5.7 2.5
[46,] 6.7 3.0 5.2 2.3
[47,] 6.3 2.5 5.0 1.9
[48,] 6.5 3.0 5.2 2.0
[49,] 6.2 3.4 5.4 2.3
[50,] 5.9 3.0 5.1 1.8
> summary(iris3)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.100 1.700 3.200 3.465 5.100 7.900
> str(iris3)
num [1:50, 1:4, 1:3] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
- attr(*, "dimnames")=List of 3
..$ : NULL
..$ : chr [1:4] "Sepal L." "Sepal W." "Petal L." "Petal W."
..$ : chr [1:3] "Setosa" "Versicolor" "Virginica"
> dim(iris3)
[1] 50 4 3
> class(iris3)
[1] "array"
9.2 泰坦尼克信息(四维)
数据维度:4x2x2x2
数据名称:Titanic(R语言)
数据类型:数组、table
部分数据展示:
> Titanic
, , Age = Child, Survived = No
Sex
Class Male Female
1st 0 0
2nd 0 0
3rd 35 17
Crew 0 0
, , Age = Adult, Survived = No
Sex
Class Male Female
1st 118 4
2nd 154 13
3rd 387 89
Crew 670 3
, , Age = Child, Survived = Yes
Sex
Class Male Female
1st 5 1
2nd 11 13
3rd 13 14
Crew 0 0
, , Age = Adult, Survived = Yes
Sex
Class Male Female
1st 57 140
2nd 14 80
3rd 75 76
Crew 192 20
> summary(Titanic)
Number of cases in table: 2201
Number of factors: 4
Test for independence of all factors:
Chisq = 1637.4, df = 25, p-value = 0
Chi-squared approximation may be incorrect
> str(Titanic)
'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...
- attr(*, "dimnames")=List of 4
..$ Class : chr [1:4] "1st" "2nd" "3rd" "Crew"
..$ Sex : chr [1:2] "Male" "Female"
..$ Age : chr [1:2] "Child" "Adult"
..$ Survived: chr [1:2] "No" "Yes"
> dim(Titanic)
[1] 4 2 2 2
> class(Titanic)
[1] "table"
9.3 伯克利分校院系、录取、性别的频数(三维)
数据维度:2x2x6
数据名称:UCBAdmissions(R语言)
数据类型:数组、table
部分数据展示:
> UCBAdmissions
, , Dept = A
Gender
Admit Male Female
Admitted 512 89
Rejected 313 19
, , Dept = B
Gender
Admit Male Female
Admitted 353 17
Rejected 207 8
, , Dept = C
Gender
Admit Male Female
Admitted 120 202
Rejected 205 391
, , Dept = D
Gender
Admit Male Female
Admitted 138 131
Rejected 279 244
, , Dept = E
Gender
Admit Male Female
Admitted 53 94
Rejected 138 299
, , Dept = F
Gender
Admit Male Female
Admitted 22 24
Rejected 351 317
> summary(UCBAdmissions)
Number of cases in table: 4526
Number of factors: 3
Test for independence of all factors:
Chisq = 2000.3, df = 16, p-value = 0
> str(UCBAdmissions)
'table' num [1:2, 1:2, 1:6] 512 313 89 19 353 207 17 8 120 205 ...
- attr(*, "dimnames")=List of 3
..$ Admit : chr [1:2] "Admitted" "Rejected"
..$ Gender: chr [1:2] "Male" "Female"
..$ Dept : chr [1:6] "A" "B" "C" "D" ...
> dim(UCBAdmissions)
[1] 2 2 6
> class(UCBAdmissions)
[1] "table"
9.4 592 头色、眼睛颜色和性别的频数(三维)
数据维度:4x4x2
数据名称:HairEyeColor(R语言)
数据类型:数组、table
部分数据展示:
> HairEyeColor
, , Sex = Male
Eye
Hair Brown Blue Hazel Green
Black 32 11 10 3
Brown 53 50 25 15
Red 10 10 7 7
Blond 3 30 5 8
, , Sex = Female
Eye
Hair Brown Blue Hazel Green
Black 36 9 5 2
Brown 66 34 29 14
Red 16 7 7 7
Blond 4 64 5 8
> str(HairEyeColor)
'table' num [1:4, 1:4, 1:2] 32 53 10 3 11 50 10 30 10 25 ...
- attr(*, "dimnames")=List of 3
..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"
..$ Eye : chr [1:4] "Brown" "Blue" "Hazel" "Green"
..$ Sex : chr [1:2] "Male" "Female"
> dim(HairEyeColor)
[1] 4 4 2
> class(HairEyeColor)
[1] "table"