模(Mod)运算

定义:

y y y m o d mod mod x = x − y [ x y ] x=x-y[\frac{x}{y}] x=xy[yx] y ≠ 0 y \neq 0 y=0

x x x m o d mod mod y y y 的值介于 0 0 0 y y y 之间:

0 0 0 ≥ \ge y y y m o d mod mod x x x > > > y y y y < 0 y<0 y<0
0 0 0 ≤ \le y y y m o d mod mod x x x < < < y y y y > 0 y>0 y>0
x x x m o d mod mod 0 = x 0= x 0=x   , y = 0 y=0 y=0

模(Mod)在一些场合,可用符号 % \% %表示,它是一个二元运算,例如:
A. 结合律

( ( a + b ) % p + c ) % p = ( a + ( b + c ) % p ) % p ((a+b)\%p+c)\%p=(a+(b+c)\%p)\%p ((a+b)%p+c)%p=(a+(b+c)%p)%p

( ( a ∗ b ) % p ∗ c ) % p = ( a ∗ ( b ∗ c ) % p ) % p ((a*b)\%p * c)\%p= (a * (b*c)\%p)\%p ((ab)%pc)%p=(a(bc)%p)%p

B. 交换律

( a + b ) % p = ( b + a ) % p (a+b)\%p=(b+a)\%p (a+b)%p=(b+a)%p

( a ∗ b ) % p = ( b ∗ a ) % p (a*b)\%p=(b*a)\%p (ab)%p=(ba)%p

C. 分配率

( a + b ) % p = ( a % p + b % p ) % p (a+b)\%p=(a\%p+b\%p)\%p (a+b)%p=(a%p+b%p)%p

( ( a + b ) % p ∗ c ) % p = ( ( a ∗ c ) % p + ( b ∗ c ) % p ) % p ((a+b)\%p*c)\%p = ( (a*c)\%p + (b*c)\%p )\%p ((a+b)%pc)%p=((ac)%p+(bc)%p)%p

D. 基本四则运算

( a + b ) % p = ( a % p + b % p ) % p (a+b)\%p=(a\%p+b\%p)\%p (a+b)%p=(a%p+b%p)%p

( a − b ) % p = ( a % p − b % p ) % p (a-b)\%p=(a\%p-b\%p)\%p (ab)%p=(a%pb%p)%p

( a ∗ b ) % p = ( a % p ∗ b % p ) % p (a*b)\%p=(a\%p * b\%p)\%p (ab)%p=(a%pb%p)%p

a b % p = ( ( a % p ) b % p ) a^b\%p=((a\%p)^b\%p) ab%p=((a%p)b%p)

( ∑ 1 n x ) % p = ( ∑ 1 n x % p ) % p (\sum_1^n x)\%p=(\sum_1^n x\%p)\%p (1nx)%p=(1nx%p)%p

… …

注: [ x y ] [\frac{x}{y}] [yx]表示 x y \frac{x}{y} yx的结果向下取整,, o v e r ∼ over\sim over

### MOD 运算的定义与使用 MOD 运算是指取运算,其核心在于计算两个整数相除后的余数[^1]。在编程领域中,这一操作通常通过特定的语言内置函数实现。例如,在 Java 中,`BigInteger` 类提供了 `mod()` 方法来执行取运算,该方法遵循 `(this BigInteger % BigInteger val)` 的形式[^2]。 #### 取运算的基本特性 取运算的结果始终是非负数,即使被除数为负数时也是如此。这是因为取运算的核心目标是找到两数相除后剩余的部分,而非简单的代数余数。以下是取运算的一些基本性质: - 如果 \( a \equiv b \ (\text{mod}\ m) \),则 \( a \% m = b \% m \)[^4]。 - 对于任意整数 \( n \),有 \( n \% 1 = 0 \) 和 \( n \% n = 0 \)。 #### Hive 中的 MOD 函数 Hive 提供了丰富的数学运算支持,其中包括 MOD 函数。此函数可以用来返回两数相除后的余数[^3]。具体语法如下: ```sql SELECT MOD(dividend, divisor); ``` 其中,`dividend` 是被除数,`divisor` 是除数。需要注意的是,如果 `divisor` 为零,则会抛出异常。 #### 示例代码展示 以下是一些常见的 MOD 运算场景及其对应的代码示例: ##### 场景一:简单取运算 假设我们需要找出某个年份是否为闰年(能被 4 整除但不能被 100 整除,或者能被 400 整除),可以通过 MOD 实现: ```sql -- 判断某一年是否为闰年 WITH year_data AS ( SELECT 2024 AS year UNION ALL SELECT 2000 UNION ALL SELECT 1900 ) SELECT year, CASE WHEN MOD(year, 4) = 0 AND MOD(year, 100) != 0 OR MOD(year, 400) = 0 THEN 'Leap Year' ELSE 'Not Leap Year' END AS result FROM year_data; ``` ##### 场景二:数据分组 在大数据处理中,经常需要将记录按照某种规则分配到不同的桶中。例如,按 ID 值对记录进行分组: ```sql -- 将用户 ID 按照奇偶性分为两组 SELECT user_id, MOD(user_id, 2) AS group_num FROM users_table; ``` #### 定点数中的溢出检测 当涉及定点数运算时,可能会遇到溢出问题。在这种情况下,MOD 运算可以帮助验证结果的有效性。例如,对于两个大整数相乘后再取的操作,可以直接利用 MOD 来简化中间过程并防止溢出[^4]。 ```java // 防止大整数相乘导致溢出的例子 import java.math.BigInteger; public class ModExample { public static void main(String[] args) { BigInteger bigA = new BigInteger("7"); BigInteger bigB = new BigInteger("5"); BigInteger modulus = new BigInteger("3"); // 计算 (bigA * bigB) % modulus System.out.println(bigA.mod(modulus).multiply(bigB.mod(modulus)).mod(modulus)); } } ``` 上述代码展示了如何安全地完成大整数间的乘法和取运算,从而避免因数值过大而导致的错误。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值