定义:
y y y m o d mod mod x = x − y [ x y ] x=x-y[\frac{x}{y}] x=x−y[yx], y ≠ 0 y \neq 0 y=0
x x x m o d mod mod y y y 的值介于 0 0 0 和 y y y 之间:
0
0
0
≥
\ge
≥
y
y
y
m
o
d
mod
mod
x
x
x
>
>
>
y
y
y ,
y
<
0
y<0
y<0
0
0
0
≤
\le
≤
y
y
y
m
o
d
mod
mod
x
x
x
<
<
<
y
y
y ,
y
>
0
y>0
y>0
x
x
x
m
o
d
mod
mod
0
=
x
0= x
0=x ,
y
=
0
y=0
y=0
模(Mod)在一些场合,可用符号
%
\%
%表示,它是一个二元运算,例如:
A. 结合律
( ( a + b ) % p + c ) % p = ( a + ( b + c ) % p ) % p ((a+b)\%p+c)\%p=(a+(b+c)\%p)\%p ((a+b)%p+c)%p=(a+(b+c)%p)%p
( ( a ∗ b ) % p ∗ c ) % p = ( a ∗ ( b ∗ c ) % p ) % p ((a*b)\%p * c)\%p= (a * (b*c)\%p)\%p ((a∗b)%p∗c)%p=(a∗(b∗c)%p)%p
B. 交换律
( a + b ) % p = ( b + a ) % p (a+b)\%p=(b+a)\%p (a+b)%p=(b+a)%p
( a ∗ b ) % p = ( b ∗ a ) % p (a*b)\%p=(b*a)\%p (a∗b)%p=(b∗a)%p
C. 分配率
( a + b ) % p = ( a % p + b % p ) % p (a+b)\%p=(a\%p+b\%p)\%p (a+b)%p=(a%p+b%p)%p
( ( a + b ) % p ∗ c ) % p = ( ( a ∗ c ) % p + ( b ∗ c ) % p ) % p ((a+b)\%p*c)\%p = ( (a*c)\%p + (b*c)\%p )\%p ((a+b)%p∗c)%p=((a∗c)%p+(b∗c)%p)%p
D. 基本四则运算
( a + b ) % p = ( a % p + b % p ) % p (a+b)\%p=(a\%p+b\%p)\%p (a+b)%p=(a%p+b%p)%p
( a − b ) % p = ( a % p − b % p ) % p (a-b)\%p=(a\%p-b\%p)\%p (a−b)%p=(a%p−b%p)%p
( a ∗ b ) % p = ( a % p ∗ b % p ) % p (a*b)\%p=(a\%p * b\%p)\%p (a∗b)%p=(a%p∗b%p)%p
a b % p = ( ( a % p ) b % p ) a^b\%p=((a\%p)^b\%p) ab%p=((a%p)b%p)
( ∑ 1 n x ) % p = ( ∑ 1 n x % p ) % p (\sum_1^n x)\%p=(\sum_1^n x\%p)\%p (∑1nx)%p=(∑1nx%p)%p
… … …
注: [ x y ] [\frac{x}{y}] [yx]表示 x y \frac{x}{y} yx的结果向下取整,, o v e r ∼ over\sim over∼