第1章 准备工作

本文介绍了Python在数据分析中的核心应用,重点关注NumPy、pandas和matplotlib等库。NumPy提供高效多维数组操作,pandas支持面向列的数据帧处理,matplotlib则用于数据可视化。此外,还提到了scikit-learn的机器学习功能和statsmodels的统计分析能力。
摘要由CSDN通过智能技术生成

1.1本书的内容

要处理的数据类型,结构化数据如下等:

表格型数据,其中各列可能是不同的类型(字符串、数值、 ⽇期等)。

多维数组(矩阵)。

通过关键列(对于SQL⽤户⽽⾔,就是主键和外键)相互联系的多个表。

间隔平均或不平均的时间序列。

json类型数据

1.2为什么要使⽤Python进⾏数据分析

Python的库的强大,如pandas和scikit-learn、matplotlib等

1.3重要的Python库

以下三个标准库是学习的重点:NumPy,pandas,matplotlib,还包括:SciPy,scikit-learn,statsmodels等

NumPy:

快速高效的多维数组对象ndarray;

对数组执行元素级计算以及直接对数组执行数据运算的函数;

读写硬盘上基于数组的数据集工具;

线性代数运算、傅里叶变换及随机数的形成;

成熟的C API

pandas:使用最多的pandas对象是DataFrame,它是⼀个⾯向列(column-oriented)的⼆维表结构,另⼀个是 Series,⼀个⼀维的标签化数组对象。pandas重要的功能是完成重塑、切片、切块、聚合和选取数据子集的操作,是数据分析的基础。

matplotlib:最流行的用于绘制图表和其他二维可视化的工具。

SciPy:一组专门解决科学计算中各种标准问题域的包的集合,主要包括:

scipy.integrate:数值积分例程和微分方程求解器。

scipy.linalg:扩展了由numpy.linalg提供的线性代数例程和矩阵分解功能。

scipy.optimize:函数优化器(最小化器)以及根查找算法。

scipy.signal:信号处理⼯具。

scipy.sparse:稀疏矩阵和稀疏线性系统求解器。

scipy.special:SPECFUN(这是⼀个实现了许多常⽤数学函数(如伽玛函数)的Fortran库)的包装器。

scipy.stats:标准连续和离散概率分布(如密度函数、采样器、连续分布函数等)、各种统计检验方法,以及更好的描述统计法。

SciPy常和NumPy一起用。

scikit-learn:通用机器学习工具包,包括

分类:sum、近邻、随机森林、逻辑回归等,

回归:lasso、岭回归等,

聚类:k-均值,普聚类,

降维:PCA、特征选择、矩阵分解,

选型:网络搜索、交叉验证、度量,

预处理:特征提取、标准化处理。

statsmodels:statsmodels是⼀个统计分析包,包含经典统计学和经济计量学的算法,包括子模块:

回归模型:线性回归、广义线性模型、健壮线性模型,线性混合效应模型等等。

方差分析。

时间序列分析:AR,ARMA,ARIMA,VAR和其它模型。

非参数方法:核密度估计,核回归。

统计模型结果可视化。

statsmodels更关注统计推断,提供不确定估计和参数p-值。相反的,scikit-learn注重预测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值