(确界存在定理——实数系连续性定理)非空有上界的数集必有上确界;非空有下界的数集必有下确界。
单调有界数列必定收敛。
如果 { [ a n , b n ] } \{[a_n,b_n]\} {[an,bn]} 形成一个闭区间套,则存在唯一的实数 ξ \xi ξ 属于所有的闭区间 [ a n , b n ] [a_n,b_n] [an,bn],且 ξ = lim n → ∞ a n = lim n → ∞ b n \xi=\lim\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}b_n ξ=n→∞liman=n→∞limbn 。
有界数列必有收敛子列。
数列 { x n } \{x_n\} {xn}收敛的充分必要条件是: { x n } \{x_n\} {xn} 是基本数列。