CLIPCAP:图生文

ClipCap: CLIP Prefix for Image Captioning



前言

本文主要目的是学习这篇paper,以及纪录相关的代码学习过程
论文:https://arxiv.org/abs/2111.09734
Github:
https://github.com/rmokady/CLIP_prefix_caption
https://github.com/yangjianxin1/ClipCap-Chinese
参考链接:
ClipCap:让计算机学会看图说话


一、原理

在这里插入图片描述
ClipCap提出一种基于Mapping Network的Encoder-Decoder模型,其中Mapping Network扮演了图像空间与文本之间的桥梁。模型主要分为三部分:

  • Image Encoder : Clip编码图像,得到clip embedding
  • Mapping Network: 将图片向量clip_embed映射到文本空间中,得到一个文本提示向量序列prefix_embedding
  • Text Encoder:采用GPT2模型,根据提示向量序列prefix_embeds, 生成caption
    有点像UNILM

二、 方法

在这里插入图片描述
给定x_i, 得到c_i,最大化(1)的序列概率。(2)是GPT2那部分的求解目标
在这里插入图片描述
最后的loss是交叉熵损失,整个模型比较简单。
Mapping Network 有两种:MLP or Transformer

1.4 实验

数据集:


三、运行记录

3.1 准备

1、flickr30k.tar:压缩后是名为results_20130124.token的图片标注文件
2、flickr30k-images:共计约31783张照片

  • 模型权重
    Clip的权重
_MODELS = {
    "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
    "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
    "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
    "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
    "RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
    "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
    "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
    "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
}

GPT2 中文模型
https://github.com/Morizeyao/GPT2-Chinese gpt2通用中文模型

3.2 模型训练

python train.py \
    --data_path datasets/clip_caption.pkl \
    --gpt2_path pretrain_models/gpt2 \
    --bert_path pretrain_models/bert \
    --output_path output/finetune \
    --lr 2e-5 \
    --epochs 40 \
    --prefix_len 10 \
    --constant_len 10 \
    --clip_size 512 \
    --bs_train 40 \
    --dev_size 1000 \
    --bs_eval 128 \
    --max_len 100 \
    --warmup_steps 5000 \
    --save_step 1000 \
    --eval_step 500 \
    --finetune_gpt2 \
    --mapping_type mlp \
    --do_train

在这里插入图片描述
蓝色:bert no finetune + gpt2
黑色:mlp finetune + gpt2
MLP的loss下降更快,也更低
BERT的loss下降慢,收敛的不好
因为:黑色是,MLP和GPT2是一起微调的,蓝色是只微调BERT,训练难度更大,GPT2是固定的。

对topk和topp的理解:
语言生成:搜索 or 采样,that is the question

总结:
Flickr30中文caption数据是由机器翻译获得的,质量上存在缺陷,后续可以考虑使用更加高质量的数据进行模型训练。并且根据训练过程分析可以知道,由于训练数据量较小,模型存在过拟合的风险,后续可以考虑使用更高量级的数据进行训练,相信能够获得更好的效果。

  • 更高质量的数据集
  • CLIP模型可以考虑换成中文的Chinese-CLIP模型,对中文的感知能力强点
  • Mapping Network在小的数据集上MLP比较优秀, 也比较轻量化
  • 文本生成部分,可以尝试GPT2更强的作为baseline来进行
  • 论文中采用topk, topp的采样,可以尝试其他语言模型采样的方法: A Contrastive Framework for Neural Text Generation
### 大模型成技术实现 #### 模型训练与通用能力 大型语言模型通过在大规模互联网数据上的训练,获得了处理多种类型本的能力。这些模型利用令牌化方法将不同的本形式(如代码、数学表达式和自然语言)统一表示,从而增强了其泛化性能[^2]。 #### 总结成任务 除了常规的对话理解和问答功能外,大模型还支持总结成任务。在这种场景下,输入通常是一篇较长的章或者档,而目标则是让模型成一篇简洁明了的摘要来概括原的主要内容[^1]。 #### 基于检索增强成 (RAG) 为了提高成质量以及准确性,在某些应用场合会采用基于检索增强成的技术方案。该方法首先从外部知识库中检索相关信息作为补充材料,随后将其与用户的原始请求相结合形成新的提示模板,最后送入大语言模型完成最终输出[^3]。 #### 控制机制 - 内容控制 对于特定需求下的精准成任务,则可能需要用到更精细的内容控制系统。这类系统允许开发者指定详细的规则集用于指导模型的行为模式,比如调整句子长度分布或是限定词汇表范围等操作都属于此范畴内的实践案例之一[^4]。 ```python def generate_text(prompt, model_parameters): """ A function to demonstrate how a large language model might be used programmatically. Args: prompt (str): The input text or question provided by the user. model_parameters (dict): Parameters controlling aspects of generation such as temperature and max tokens. Returns: str: Generated response from the LLM based on given inputs. """ generated_response = call_large_language_model_api(prompt=prompt, params=model_parameters) return post_process(generated_response) def call_large_language_model_api(prompt, params): pass # Placeholder for actual API invocation logic def post_process(response): pass # Placeholder for any necessary processing after receiving raw output ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值