数据结构笔记

数据结构:
研究数据的内部逻辑结构和存储方式,通过优化数据处理,来提高程序运行速度的学科

逻辑结构:
集合,表,树,图

集合: 结构体,联合体
线性表: 多个相同数据类型的元素组成的有限序列,每个元素(除首尾外)有唯一的前驱节点和后驱节点。
数组,链表

非线性表: 多个相同数据类型的元素组成的有限序列,每个元素不一定只有1个前驱或者1个后驱节点

存储结构:
顺序存储: 数组,每个元素是可以按照下标顺序访问的
链式存储: 链表,每个元素通过指针连接。

顺序存储:优点 --- 存储空间连续,可以通过下标来访问任意元素
		缺点 --- 一定会有存储上限,
				在做增删操作时,操作对象的所有后驱节点全部要挪动
链式存储:优点 --- 直到系统上限之前,节点空间可以无限申请下去。
				增删操作不需要移动节点数据,可以通过修改指针来进行,非常简单
		缺点 --- 访问元素时,必须从头遍历链表(需要访问目标节点的所有前驱节点)

时间复杂度: 用来描述一个程序运行所需要的时间的方法

时间复杂度不会关注具体的运行时间,而只会关注与运行时间相关的变量情况

for(i=0;i<n;i++) —> 运行所需要的时间与n相关,那么就说这个程序时间复杂度是 O(n);

for(i=0;i<n;i+=3) —> 运行时间只与n的大小相关,那么它的时间复杂度仍然是 O(n);

int s=0;
while(s<n)
{
s += s+1;
}

运行时间与两个值相关,当n的数值增加时,左侧运行的次数 1/2 * x^2 数值也会增加,x是项数
所以x,也就是循环次数,与 n的开方成正比例关系, 此时时间复杂度是 O(n的开方)

for(i=0;i<n;i++)
for(j=0;j<n;j++)

	运行的时间只与n相关,但是运行次数是 n*n, 所以此时的时间复杂度是 O(n^2);

习题:请说出以下程序的时间复杂度
(1) while(n–); O(n);
(2) for(i=0;i<n;i++)
for(j=0;j<m;j++); O(nm);
(3) int x=1,y=10;
while(y>0)
{
if(y>5)
{
x–;
y–;
}
else
y–;
} 不存在任何变量延长循环事件,所以是常量的时间复杂度 O(1)
(4)while(i<=n)
i = i
3; O((log3)n)
(5)x = 2;
while(x<n/2)
x = x*2; O((log2)n)

=顺序表===
顺序表一般指的是按顺序存储的线性表。按照存储空间有栈空间顺序表和堆空间顺序表。

栈空间顺序表----数组
堆空间顺序表----需要用到结构体

struct heap{
int *arr;//定义一个指针,指向顺序表的堆空间,指针类型与顺序表内存储的数据类型一致
int size;//定义容量,用来表示顺序表最大的元素容量,也就是元素上限
int cnt;//用来记录顺序表存入了多少数据,也就是下一个新元素进入顺序表时保存的位置的下标
}

顺序表一般都是先进后出(后进先出)的情况。这种结构也被称为栈。那么它的加入数据称为入栈,

删除数据称为出栈。

习题:
创建一个顺序表,输入整数就入栈,输入负数出栈。

链表:
相同数据类型链式存储的线性表

链表一般使用结构体来标识存储数据的元素

struct list{
int data; //数据域:保存数据的位置。 int,char*,struct num
struct list *next;//指针域:指向下一个元素(节点)的地址
};

链表在创建时有两种不同的方式:
(1)存在头结点,且头结点不保存数据
(2)不存在头结点,

区别:有头结点的链表在头部插入时,需要保留的链表头指针不变。但

对于没有头结点的链表来说,头部插入以后,需要更换被保留的链表头结点。

链表的操作:
创建头结点
创建普通节点
增删查改
遍历显示

思考1:
如果插入的是任意一个位置,要怎么写?

头部插入---插入到head头结点的后面
void insert_front(LIST head,LIST node)
当需要插入到dest节点后面时,可以直接调用 insert_front(dest,node);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值