随机误差的合成

  随机误差是用标准差 σ \sigma σ(或其估计值标准差 σ s \sigma _{s} σs)或极限测量误差 δ l i m \delta_{lim} δlim来表示,随机误差的合成,主要是在一定置信概率条件下精度参数 σ \sigma σ δ l i m \delta_{lim} δlim的合成。

一、基本计算公式

  由前面可知,各直接测量值 x i x_{i} xi与合成后的量值 y y y之间的一般函数关系为
y = f ( x 1 , x 2 , ⋯   , x m ) y=f(x_{1},x_{2},\cdots ,x_{m}) y=f(x1,x2,,xm)
  设对各 x i x_{i} xi值都重复测量 n n n次,其随机误差 δ x i , j ( i = 1 ∼ m , j = 1 ∼ n ) \delta x_{i,j}(i=1\sim m,j=1\sim n) δxi,j(i=1m,j=1n)如下:
对 x 1 有 δ x 11 , δ x 12 , ⋯   , δ x 1 n 对 x 2 有 δ x 21 , δ x 22 , ⋯   , δ x 2 n ⋮ 对 x m 有 δ x m 1 , δ x m 2 , ⋯   , δ x m n   相应地对 y 有 δ y 1 ,   δ y 2 ,   ⋯   , δ y n ‾ \begin{matrix} \qquad \qquad对x_{1}有\delta x_{11},\delta x_{12},\cdots ,\delta x_{1n}\\ \qquad \qquad对x_{2}有\delta x_{21},\delta x_{22},\cdots ,\delta x_{2n}\\ \vdots \\ \qquad \qquad对x_{m}有\delta x_{m1},\delta x_{m2},\cdots ,\delta x_{mn}\\ \overline{\quad \,相应地对y有\delta y_{1},\, \delta y_{2},\,\cdots ,\quad\delta y_{n}} \end{matrix} x1δx11,δx12,,δx1nx2δx21,δx22,,δx2nxmδxm1,δxm2,,δxmn相应地对yδy1,δy2,,δyn
  纵向归纳,按公式 Δ y = ∂ f ∂ x 1 Δ x 1 + ∂ f ∂ x 2 Δ x 2 + ⋯ + ∂ f ∂ x m Δ x m \Delta y=\frac{\partial f}{\partial x_{1}}\Delta x_{1}+\frac{\partial f}{\partial x_{2}}\Delta x_{2}+\cdots +\frac{\partial f}{\partial x_{m}}\Delta x_{m} Δy=x1fΔx1+x2fΔx2++xmfΔxm可得以下各式:
δ y 1 = ∂ f ∂ x 1 δ x 11 + ∂ f ∂ x 2 δ x 21 + ⋯ + ∂ f ∂ x m δ x m 1 δ y 2 = ∂ f ∂ x 1 δ x 12 + ∂ f ∂ x 2 δ x 22 + ⋯ + ∂ f ∂ x m δ x m 2 ⋮ δ y n = ∂ f ∂ x 1 δ x 1 n + ∂ f ∂ x 2 δ x 2 n + ⋯ + ∂ f ∂ x m δ x m n } ⋯ ⋯ ( 1 ) \left.\begin{matrix} \delta y_{1}=\frac{\partial f}{\partial x_{1}}\delta x_{11}+\frac{\partial f}{\partial x_{2}}\delta x_{21}+\cdots +\frac{\partial f}{\partial x_{m}}\delta x_{m1}\\ \delta y_{2}=\frac{\partial f}{\partial x_{1}}\delta x_{12}+\frac{\partial f}{\partial x_{2}}\delta x_{22}+\cdots +\frac{\partial f}{\partial x_{m}}\delta x_{m2}\\ \vdots \\ \delta y_{n}=\frac{\partial f}{\partial x_{1}}\delta x_{1n}+\frac{\partial f}{\partial x_{2}}\delta x_{2n}+\cdots +\frac{\partial f}{\partial x_{m}}\delta x_{mn} \end{matrix}\right\}\cdots \cdots (1) δy1=x1fδx11+x2fδx21++xmfδxm1δy2=x1fδx12+x2fδx22++xmfδxm2δyn=x1fδx1n+x2fδx2n++xmfδxmn ⋯⋯(1)
  将以上各式一一平方后得:
δ y 1 2 = ( ∂ f ∂ x 1 ) 2 δ x 11 2 + ( ∂ f ∂ x 2 ) 2 δ x 21 2 + ⋯ + ( ∂ f ∂ x m ) 2 δ x m 1 2 + ∑ i ≠ j ∂ f ∂ x i ⋅ ∂ f ∂ x j δ i 1 δ j 1 δ y 1 2 = ( ∂ f ∂ x 1 ) 2 δ x 12 2 + ( ∂ f ∂ x 2 ) 2 δ x 22 2 + ⋯ + ( ∂ f ∂ x m ) 2 δ x m 2 2 + ∑ i ≠ j ∂ f ∂ x i ⋅ ∂ f ∂ x j δ i 2 δ j 2 ⋮ δ y 1 2 = ( ∂ f ∂ x 1 ) 2 δ x 1 n 2 + ( ∂ f ∂ x 2 ) 2 δ x 2 n 2 + ⋯ + ( ∂ f ∂ x m ) 2 δ x m n 2 + ∑ i ≠ j ∂ f ∂ x i ⋅ ∂ f ∂ x j δ i n δ j n } ⋯ ⋯ ( 2 ) \left.\begin{matrix} \delta y_{1}^{2}=(\frac{\partial f}{\partial x_{1}})^{2}\delta x_{11}^{2}+(\frac{\partial f}{\partial x_{2}})^{2}\delta x_{21}^{2}+\cdots +(\frac{\partial f}{\partial x_{m}})^{2}\delta x_{m1}^{2}+\sum_{i\neq j}\frac{\partial f}{\partial x_{i}} \cdot \frac{\partial f}{\partial x_{j}}\delta _{i_{1}}\delta _{j_{1}}\\ \delta y_{1}^{2}=(\frac{\partial f}{\partial x_{1}})^{2}\delta x_{12}^{2}+(\frac{\partial f}{\partial x_{2}})^{2}\delta x_{22}^{2}+\cdots +(\frac{\partial f}{\partial x_{m}})^{2}\delta x_{m2}^{2}+\sum_{i\neq j}\frac{\partial f}{\partial x_{i}} \cdot \frac{\partial f}{\partial x_{j}}\delta _{i_{2}}\delta _{j_{2}}\\ \vdots \\ \delta y_{1}^{2}=(\frac{\partial f}{\partial x_{1}})^{2}\delta x_{1n}^{2}+(\frac{\partial f}{\partial x_{2}})^{2}\delta x_{2n}^{2}+\cdots +(\frac{\partial f}{\partial x_{m}})^{2}\delta x_{mn}^{2}+\sum_{i\neq j}\frac{\partial f}{\partial x_{i}} \cdot \frac{\partial f}{\partial x_{j}}\delta _{i_{n}}\delta _{j_{n}} \end{matrix}\right\}\cdots \cdots (2) δy12=(x1f)2δx112+(x2f)2δx212++(xmf)2δxm12+i=jxi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值