智能科学与技术专栏
文章平均质量分 91
对某个前沿学科领域的现状及相关重大进展进行分析归纳,探讨或借鉴相关技术领域发展、分析其创新意义,指出并建议后续可行的发展方向。对智能科学与技术某一特定主题的全面探讨与深度解析,挖掘从理论方法、技术研发到产业最前沿应用的可行途径,促进科技成果转化,促进科学与技术的发展对未来产生深远影响。
罗伯特之技术屋
畅游在技术海洋,八大领域领衔解读!欢迎咨询毕设、论文、期刊、职称等业务!如您下载的资源或购买的专栏文章有质量、准确性、完整性(公式)等问题,还请私信我们,我们竭诚为您服务。
展开
-
“东数西算”宁夏节点数字经济产业发展研究
摘要基于宁夏大数据产业的发展现状,利用PESTEL模型对大数据产业的发展环境进行评估,并采用SWOT分析法,将宁夏大数据产业与宁夏的传统产业和其他地区的大数据产业进行多方面对比分析。基于分析结果,分别从完善大数据发展环境、优化大数据产业结构、绿色发展等角度提出发展建议。关键词: 数字经济 ; PESTEL环境模型 ; SWOT分析 ; 绿色发展随着信息技术和人类生产生活交汇融合,互联网快速普及,全球数据呈现爆发增长、海量集聚的特点,对经济发展、社会治理、国家管理、人民生活都产生了重大影响。世界各国都把推进经原创 2024-09-03 22:56:48 · 721 阅读 · 0 评论 -
“东数西算”甘肃枢纽庆阳集群:现状与前景
摘要旨在分析“东数西算”甘肃枢纽庆阳集群的发展现状、查找存在问题、展望发展前景、加快甘肃枢纽庆阳集群建设步伐。采用文献调研及实地调研方法对庆阳集群的特色优势、取得的成绩、面临的挑战、存在的问题进行了调研和分析,并对庆阳集群建设前景进行了展望。建议从国家、省级、集群3个层面部署,通过实施产业创新发展期、产业生态提升期、产业高地铸造期三步走战略,完成“七大战略”任务,重点发展“东数西算”核心、衍生、赋能“三大产业”,形成智算、智能、智产“三大体系”,建成“绿色化、科技型、安全式”智慧园区。关键词: “东数西算”原创 2024-09-03 22:55:30 · 1776 阅读 · 0 评论 -
基于多方安全计算的公共数据融合创新模式研究及应用
摘要多方安全计算技术已广泛应用于金融、互联网等领域,用于解决“数据孤岛”难题,然而其在公共数据领域的应用尚不成熟。针对公共数据领域提出了基于多方安全计算的公共数据融合创新模式,开发设计了在保护数据安全前提下利用各主体公共数据联合计算的技术架构。该模式通过技术创新突破制度制约,实现数据价值提升和保障数据安全的兼顾。主要分析了模式中多方安全计算核心系统的3个子层:联合计算子结构层、安全关系代数层和多方安全计算基础算子层。此外,还给出了实现公共数据融合创新模式的通用流程,并对公共数据融合创新模式的应用实例进行了阐原创 2024-09-03 22:42:43 · 441 阅读 · 0 评论 -
支持互联互通的隐私计算网关设计与实现
在隐私计算平台的实际应用中,数据提供机构常根据已有平台或正在研发中的隐私计算系统,为其数据应用的机构客户配置隐私计算平台。鉴于此,隐私计算厂商开始探索隐私计算平台的高级互联互通,这一阶段旨在通过制定不同厂商之间的互通规范或方法,明确相互间的通信协议、报文封装以及加密算法等内容,从更高层面实现不同厂商隐私计算平台之间的互通。所谓隐私计算互联互通,即在不同系统架构下,通过统一规范的接口和交互协议,实现跨隐私计算平台的数据、算法和算力的互动与协同,为用户共同完成同一隐私计算任务提供技术支持。原创 2024-09-03 22:40:22 · 228 阅读 · 0 评论 -
基于区块链的感知数据交易隐私保护方案
在收集数据时,使用随机应答机制模型下的差分隐私对用户的数据进行加噪,可根据不同的数据特性选择相应的处理算法,不需要可信的第三方就可以获得接近CDP的隐私保护效果。因此,用户不需要信任服务器。其中,Pr[y|v]表示依赖于v的真实值形成的分布, Uni([k])是均匀随机分布,并且Pr[Uni([k])=y]=1/k,n个用户中,除第n个用户外,其余n-1个用户的输出可以看作包含一些均匀噪声,这些噪声使输出具有不确定性,v∈[k]噪声服从Bni(n−1,γ/k),即服从 Bni(n−1,1eεl+k−1)。原创 2024-09-03 22:38:02 · 614 阅读 · 0 评论 -
表现性语音合成综述
摘要语音合成是语音、语言和机器学习领域的一个热门研究课题,旨在合成给定文本的可理解和自然的语音,在工业中有广泛的应用。语音合成的目标之一是合成自然的语音,而目前的语音合成在情感、韵律等方面还有很大的改进空间。对表现性语音合成进行了全面的调查,旨在更好地了解当前的研究现状和未来的趋势。对近年来基于情感及韵律的表现性语音合成进行了全面的总结、比较和分析。首先介绍了普通语音合成的传统实现方式及瓶颈;然后引入表现性语音合成并描述表现性语音合成在情感、韵律等方面为语音合成自然化带来的增益;最后对表现性语音合成进行了展原创 2024-09-03 22:00:18 · 310 阅读 · 0 评论 -
融合光谱度量标记迁移和Tri-training的高光谱遥感图像半监督分类算法
基于此,本文充分利用光谱相似性、光谱信息量的差异性以及高光谱遥感影像的空间特征,通过集成Tri-training算法,提出了融合光谱度量标记迁移和Tri-training的高光谱遥感图像半监督分类算法,通过定义光谱度量来刻画样本之间的相似性,将基于光谱度量的标记迁移和Tri-training的基分类器相结合,减少错分样本进入训练集的风险。该算法充分利用高光谱遥感图像的光谱和空间特征,通过光谱度量标记迁移修正Tri-training算法来扩充样本的类标记,降低扩充样本的错分率,进而提高半监督分类算法的精度。原创 2024-09-03 21:57:37 · 321 阅读 · 0 评论 -
基于用户交互体验的品牌数字化传播评估模型
消费者对产品品牌的情感关系到产品品牌传播的效果,本文总结为品牌情感;本文在现有的产品视角研究基础之上,引入用户中心化的交互情感因素,兼顾产品和用户两个维度,综合考量品牌信息测度、品牌情感与用户意愿,基于交互情感视角进行品牌传播评估模型的建立,弥补了现有研究在用户情感视角方面的不足。基于交互情感的品牌数字化传播效果的研究,从产品和用户两个维度发掘当前品牌传播中存在的问题与缺陷,指导构建地标产品在客户侧的价值认同,有利于帮助地标品牌取长补短,更加精准地进行品牌建设投入,使品牌更加深入人心,促进商品的销售。原创 2024-09-03 21:54:38 · 193 阅读 · 0 评论 -
数据要素价值化发展路径与对策研究
要更好地发挥数据要素价值,需通过技术手段及市场机制对数据要素进行“化学”反应,即通过成熟的隐私计算、区块链、大数据等技术手段,对数据要素(包括政府数据、行业数据、企业数据、个人数据等)进行深度的价值挖掘和处理,有价值的数据通过数据交易中心/数据商城实现规范化确权和资产化交易等,进而实现数据要素的经济价值、社会价值、政治价值和人文价值等,为实现我国数字经济高质量发展提供动力。目前,数据要素市场已经开始了数据资本化的创新试点探索,总结起来主要包括以下4种模式:数据证券化、数据质押融资、数据银行和数据信托。原创 2024-09-03 21:53:05 · 321 阅读 · 0 评论 -
城市疫情态势发展与动态调控可视分析
情感词典包括SnowNLP库和自定义情感库。设此时有A、B、C、D 4个方舱,为患者S1规划距其最近而负载量不大的方舱D,患者S2虽距方舱A较近,但由于A负载量较大,系统为其规划路线送往方舱B,方舱B虽比方舱C负载量更小,但由于患者S3患病程度权重较大,系统为其规划距离较近的方舱C。对于单个患者的路径规划,假设G=(V,E)表示一个方舱医院位置分布图,其中V表示节点集合(包括患者所在位置),E表示患者所在位置与方舱医院形成的边集合,其中 (u,v)∈E,每条边的权重应有多种度量参数,不只是单一的距离问题。原创 2024-09-03 21:49:53 · 413 阅读 · 0 评论 -
基于深度学习的施工安全隐患整改智能推荐系统
摘要水利工程施工安全隐患治理正向信息化与智能化转型,为了高效地从大量非结构化的施工安全隐患数据中挖掘出有价值的潜在信息,提出了基于深度学习的施工安全隐患整改智能推荐系统。该算法基于词频逆向文档频率算法,提取施工安全隐患的特征词,构建安全隐患关联桑基图,展示施工标段、隐患特征、隐患类型之间的信息流动特征;基于FP-Growth算法挖掘历史数据中的关联规则;结合序列相似度匹配(sequence similarity matching,SSM)算法和Doc2Vec模型,优化案例检索推荐的过程。该算法利用珠江三角洲原创 2024-09-03 21:46:39 · 427 阅读 · 0 评论 -
数据中台框架与实践
摘要数据中台将一个机构(企业、事业或政府部门)的数据作为战略资产进行管理,是从数据收集到处理应用的一套管理机制,以期提高数据质量,实现广泛的数据共享,最终实现数据价值最大化。给出数据中台的定义,提出数据中台参考技术框架,并分别对物理管理、逻辑管理、数据资产管理、数据服务和信息安全管理的组成和技术进行了展开讨论。最后以华谱系统建设为例,介绍面向家谱大数据、结合HAO智能模型的数据中台实现——华谱数据中台。关键词: 数据中台 ; 数据资产 ; 数据治理 ; 数字化转型随着移动互联网、物联网、云计算等信息技术的快原创 2024-09-03 21:37:31 · 1090 阅读 · 0 评论 -
长短期记忆网络在虚拟电厂数据中心的应用
摘要可再生能源发电具有间歇性、随机性和不可控性,为绿色能源的充分利用带来了挑战。虚拟电厂数据中心具有高能耗特性,因此成为可再生能源中间歇性(非调度性)电力的高效吸纳与调控手段。基于此,提出了一种通过时间嵌词编码的长短期记忆(long short-term memory,LSTM)网络对虚拟电厂“源荷”双侧状态进行预测的方法。该方法可实现15分钟级的“电力短缺”主动预警,为容器的暂停和备份创造充分的缓冲时间窗口,结合容器技术实现数据中心的动态能耗管理,从而提升了虚拟电厂数据中心应对电力供需失衡的鲁棒性。这对稳原创 2024-09-03 21:34:24 · 468 阅读 · 0 评论 -
基于图论的产业网络知识图谱挖掘与构建
本文利用“图”这种基本且通用的“语言”和“高保真”的方式构建产业网络图谱,非常直观、自然、直接、高效地描述了产业节点、企业间的纷繁复杂的关系,有效地解决了产业数据量大、散、乱,关系复杂等难题,降低了用户产业链研究的学习成本和时间成本,并可进行产业优化升级与模拟仿真,针对性地保护产业网络弱势节点、优化冗余产业结构,并制定保护性、预防性政策,以保证产业链供应链正常运行。我国是全球产业规模最大、产业覆盖最全的国家,但受多种因素的影响,发现产业链的堵点断点、识别卡点、寻找代替通路、全面优化产业链势在必行。原创 2024-09-03 21:28:14 · 280 阅读 · 0 评论 -
规则耦合下的多异构子网络MADDPG博弈对抗算法
针对多无人机博弈对抗过程中无人机数量动态衰减问题和传统深度强化学习算法中的稀疏奖励问题及无效经验抽取频率过高问题,本文以攻防能力及通信范围受限条件下的多无人机博弈对抗任务为研究背景,构建了红、蓝两方无人机群的博弈对抗模型,在多智能体深度确定性策略梯度(multi-agent deep deterministic policy gradient, MADDPG)算法的Actor-Critic框架下,根据博弈环境的特点对原始的MADDPG算法进行改进。原创 2024-05-02 22:49:15 · 1836 阅读 · 1 评论 -
一种建立在GPT-2模型上的数据增强方法
句子分类是一种基于句子数据进行分类的任务,属于监督学习问题的一个实例。给定训练集Dtrain={(xi,li)}Ni=1Dtrain={(xi,li)}i=1N,包含N个训练样本,其中xi是由{xi1,xi2,⋯,xip}{xi1,xi2,⋯,xip}组成的文本序列,包含p个字符,liq}表示在含有q个标签的集合中,样本xi对应的标签。xi∈XX代表整个样本空间,假设对于所有N,存在函数f,使lifxi),监督学习的目标是在仅给定数据集D。原创 2024-05-02 22:47:05 · 98 阅读 · 0 评论 -
基于路径规划特点的语义目标导航方法
在语义目标导航任务中,智能体以随机的位置和方向被初始化在一个未知地图环境中,其目标是找到特定类别的物体,如床、厕所等。智能体需要依靠提供的RGBD相机、深度相机、位置信息(GPS)和罗盘等传感器实现导航,也就是说视觉观察包括第一人称的RGB图和深度图。动作空间是离散的,由行进、左转、右转、停止共4个动作组成,行进意味着向前移动0.25 m,左转和右转的幅度为30°。当智能体认为它已经接近目标对象时,需要采取“停止”操作;原创 2024-05-02 22:45:41 · 160 阅读 · 0 评论 -
基于HHT-LSTM的冬奥会临时设施运行趋势预测方法研究
针对冬奥会延庆赛区临时设施的安全性和可使用性,本文充分结合信号处理算法与深度神经网络,提出了一种由希尔伯特黄变换(Hilbert-Huang transform,HHT)对时序数据进行信号分解和信号特征提取,长短期记忆网络(long short-term memory,LSTM)进行临时设施运行趋势预测2部分构成模型。原创 2024-05-02 22:44:30 · 140 阅读 · 0 评论 -
应用双曲空间特征融合的姓名消歧方法研究
针对传统用户影响力分析等研究遇到姓名重名的挑战,姓名歧义的影响日益严重的问题,本文基于双曲空间结合欧氏空间进行特征融合,提出融合多空间特征的网络对齐方法(geometry interaction network alignment, GINA),有效建模网络结构对用户姓名消歧的主要作用。本文同时使用欧氏空间和双曲空间进行网络表示学习,以获取具有不同空间特点的网络结构信息,使用跨空间网络映射及跨空间特征融合在尽量减少空间映射损失的情况下实现不同空间的信息交互得到最终的网络表示,进行网络对齐,进而实现姓名消歧。原创 2024-05-02 22:22:19 · 69 阅读 · 0 评论 -
基于多尺度金字塔Transformer的人群计数方法
针对密集人群场景中背景复杂、目标尺度变化较大导致人群计数精度较低的问题,本文提出一种基于多尺度金字塔Transformer的人群计数方法(multi-scale pyramid transformer network, MSPT-Net)。在特征提取阶段设计了一种基于深度可分离自注意力的金字塔Transformer主干网络结构,该网络结构能有效捕获图像的局部和全局信息,从而有效解决人群密度图像背景复杂导致计数精度低的问题;原创 2024-05-02 22:20:35 · 77 阅读 · 0 评论 -
放射多组学协同学习预测鼻咽癌自适应放疗触发机制
针对传统的放射多组学(影像组学、剂量组学和轮廓组学)模型往往采用特征拼接的方式,容易忽略不同组学特定统计属性、产生过拟合的问题,提出了以一致性约束和自适应权重为核心构建的多组学协同学习算法(multi-omics collaborative learning, MOCL)。该算法采用一致性约束挖掘不同组学特征之间的互补模式,再通过香农熵自适应学习不同组学特征的权重,最后引入紧致度图来避免过拟合现象。原创 2024-05-02 22:18:45 · 82 阅读 · 0 评论 -
高低频通道特征交叉融合的低光人脸检测算法
本研究采用公开数据集DARK FACE[1]作为实验数据集。该数据集提供了6000张真实夜间环境下拍摄的低光人脸图像,其标签为低光场景下的人脸标注,共计43849个手动标注的人脸边界框,且标注的人脸有较大的尺度方差,范围为1像素×2像素~335像素×296像素。每张图像通常有1~20个带标注的人脸信息。数据集包含教学楼、街道、桥梁、立交桥和公园等场景。图像分辨率为1080×720。因数据集在夜间低光环境下拍摄,图像具有受光不均、人脸微小、遮挡和抖动等问题。测试阶段随机挑选1000张图像作为测试集。原创 2024-05-02 22:11:39 · 65 阅读 · 0 评论 -
双关系预测与特征融合的实体关系抽取模型
现有分阶段解码的实体关系抽取模型仍存在着阶段间特征融合不充分的问题,会增大曝光偏差对抽取性能的影响。原创 2024-05-01 21:08:56 · 60 阅读 · 0 评论 -
系统故障演化过程中事件状态联系数构建研究
由于故障数据提取、表示、分析和处理过程存在不确定性,给系统故障演化过程研究带来困难,为此,提出一种基于集对分析联系数的系统故障演化过程事件状态联系数构建方法。基于联系数对多语义状态划分及同异反状态的表示分析能力,以系统安全为目标进行研究。分析已有精确系统故障演化过程分析方法的不足;将事件发生概率分布划分为安全、不确定、不安全三状态等效同异反状态,进而确定状态分项系数得到事件状态联系数;通过同异反真值表确定结果事件状态联系数。原创 2024-05-01 21:07:52 · 44 阅读 · 0 评论 -
结合多尺度注意力机制和双向门控循环网络的视频摘要模型
针对视频摘要任务中全局注意力在长距离视频序列上注意力值分布的方差较大,生成关键帧的重要性分数偏差较大,且时间序列节点边界值缺乏长程依赖导致的片段语义连贯性较差等问题,通过改进注意力模块,采用分段局部自注意力和全局自注意力机制相结合来获取局部和全局视频序列关键特征,降低注意力值的方差。原创 2024-05-01 21:06:26 · 1887 阅读 · 1 评论 -
求解电动汽车车辆路径问题的双种群协同进化算法
绿色物流领域新兴的电动汽车车辆路径问题,由于需要对车辆路径和充电决策同时优化,搜索空间急剧增大,且需要同时满足容量和电量双重约束,现有方法难以快速找到质量较优的可行解。为此,提出一种基于双种群的协同进化算法,通过忽略电量约束构造简单带容量约束的车辆路径问题,辅助原始复杂问题的快速求解。为实现其间信息交互,设计一种基于改进距离邻接矩阵的解序列特征表示方法,旨在同时获取客户访问顺序和车辆指派信息;利用降噪自编码器构建2个问题解之间转换关系,以实现问题域间知识迁移。原创 2024-05-01 21:05:14 · 85 阅读 · 0 评论 -
特征融合的装修案例跨模态检索方法
目前家装客服系统中主要依靠人工方式进行装修案例检索,导致该系统不能满足用户对咨询服务快捷、及时的需求而且人力成本高,故提出一种基于特征融合的装修案例跨模态检索算法。针对多模态数据的语义信息挖掘不充分,模型检索精度低等问题,对现有的风格聚合模块进行改进,在原始模块中引入通道注意力机制,以此来为每组装修案例中不同图片的特征向量添加合适的权重,从而增强包含更多有用信息的重要特征并削弱其他不重要的特征。原创 2024-05-01 21:04:16 · 50 阅读 · 0 评论 -
语义图支持的阅读理解型问题的自动生成
本研究提出了一种基于重构数据集的端到端自动问题生成模型,其根据给定的输入文章和答案生成多个语法一致且流畅的问题。形式上,自动问题生成任务被定义为生成问题q¯¯q¯(1)式中,p、a和q分别表示文章、答案和问题。其中文章p有m个单词,记为p={xt}mt=1p={xt}t=1m,P(q|p,a)P(q|p,a)是一个条件概率。自动问题生成的主流模型是基于sequence-to-sequence的思想[20然而,使用这种策略的自动问题生成模型无法生成满足阅读理解教学需要的问题。原创 2024-05-01 21:02:59 · 43 阅读 · 0 评论 -
基于局部Transformer的泰语分词和词性标注联合模型
泰语分词和词性标注任务二者之间存在高关联性,已有研究表明将分词和词性标注任务进行联合学习可以有效提升模型性能,为此,提出了一种针对泰语拼写和构词特点的分词和词性标注联合模型。针对泰语中字符构成音节,音节组成词语的特点,采用局部Transformer网络从音节序列中学习分词特征;考虑到词根和词缀等音节与词性的关联,将用于分词的音节特征融入词语序列特征,缓解未知词的词性标注特征缺失问题。在此基础上,模型采用线性分类层预测分词标签,采用线性条件随机场建模词性序列的依赖关系。原创 2024-05-01 21:02:00 · 58 阅读 · 0 评论 -
面向医学影像报告生成的门归一化编解码网络
医学影像报告的自动生成可以减轻医生的工作强度,减少误诊或漏诊的情况发生。由于医学影像的独特性,通常病灶比较小,与正常区域灰度差异难以分辨,导致文本生成时关键词的缺失,报告不够准确。对此提出一种面向医学影像报告生成的门归一化编解码网络,通过门控通道变换单元优化视觉特征提取,加强特征间的差异,自动筛选关键特征;提出门归一化算法,沿通道维度整合上下文信息,在浅层网络激活、深层网络抑制通道间神经元活性,过滤无效特征,使文本和视觉语义充分交互,提高报告生成质量。原创 2024-05-01 21:00:52 · 1776 阅读 · 1 评论 -
助训练框架下的半监督软测量建模方法
为了充分利用工业过程中大量无标签样本信息,并减少过程的不确定因素对无标签样本质量的影响,提出一种助训练框架下的半监督孪生支持向量回归软测量建模方法。采用孪生支持向量回归机构建主学习器,对高置信度无标签样本添加伪标签;同时,基于K近邻算法构建辅学习器,最大化学习器在近邻样本集上的均方误差,经过此项指标筛选后的待处理样本集包含了更多的数据信息;主、辅学习器二者相辅相成,一定程度上提高了模型的泛化性;再利用所构建的助训练框架提高样本利用率后得到预测模型,实现对无标签样本信息的充分挖掘。原创 2023-12-02 20:08:23 · 876 阅读 · 0 评论 -
运动序列的时空结构特征表示模型
运动序列是一种与运动信号相关的多维时间序列,各个维度序列之间具有高耦合性的特点。现有的多维序列表征方法大多基于维度间相互独立的假设或缺乏可解释性,为此,提出一种适用于运动序列的时空结构特征表示模型及其两阶段构造方法。首先,基于空间变化事件的转换方法,将多维时间序列变换成一维事件序列,以保存序列中的空间结构特性。接着,定义了一种时空结构特征的无监督挖掘算法。基于新定义的表示度度量,该算法从事件序列中提取一组具有代表性的低冗余变长事件元组为时空结构特征。原创 2023-12-02 20:06:43 · 844 阅读 · 0 评论 -
面向超大规模数据的自适应谱聚类算法
针对超大规模数据聚类过程中人为设定邻域参数及计算量庞大等问题,提出了一种基于近似自然近邻的自适应超大规模谱聚类算法(approximate natural nearest neighbor based self-adaptive ultra-scalable spectral clustering algorithm, AN3-SUSC)。原创 2023-12-02 20:05:15 · 968 阅读 · 0 评论 -
基于混合卷积与三重注意力的高光谱图像分类网络
针对高光谱图像光谱维度高、现有网络无法提供深度级的多层次特征,从而影响分类精度和速度的问题。首先采用核主成分分析对高光谱图像进行降维,使降维后的数据具有最佳区分度,提出了一种基于混合卷积与三重注意力的卷积神经网络(hybrid convolutional neural network with triplet attention, HCTA-Net)模型,该模型设计了一种基于三维、二维和一维卷积的混合卷积神经网络,通过不同维度卷积神经网络的融合,提取高光谱图像精细的光谱–空间联合特征。原创 2023-12-02 20:03:12 · 981 阅读 · 0 评论 -
不确定成对约束的双对抗流形传播方法
成对约束传播(pairwise constraint propagation, PCP)通常研究的是在初始给定精确的成对约束基础上通过传播学习来增加成对约束的数量,从而给机器学习任务提供较多的监督信息。可是,在现实场景中,有时还有一些不精确的成对约束,因此,如何利用这些不精确的成对约束来提高成对约束传播学习的效果是一个有待解决的问题。针对这一问题,本文提出了一种不确定成对约束的传播方法。原创 2023-12-02 20:01:16 · 360 阅读 · 0 评论 -
结合全局注意力机制的实时语义分割网络
针对轻量化网络结构从特征图提取有效语义信息不足,以及语义信息与空间细节信息融合模块设计不合理而导致分割精度降低的问题,本文提出一种结合全局注意力机制的实时语义分割网络(global attention mechanism with real time semantic segmentation network ,GaSeNet)。首先在双分支结构的语义分支中引入全局注意力机制,在通道与空间两个维度引导卷积神经网来关注与分割任务相关的语义类别,以提取更多有效语义信息;原创 2023-12-02 19:59:38 · 929 阅读 · 0 评论 -
具有角色意识的社区服务型时空众包任务分配
通过E-CARGO模型将CSSC问题形式化,系统 ∑∑ 可以描述为9元组 ∑::=∑::= ,其中C是类集,O是对象集,A是代理集,M是消息集,R是角色集,E是环境集,G是组集, s0s0 是系统的初始状态,H是用户集。本文使用m来表示代理集合A的大小,即 m=|A|m=|A| ,n。原创 2023-12-02 19:57:56 · 856 阅读 · 0 评论 -
求解动态维修资源优化调度的多目标进化算法
为解决维修资源调度过程中出现的维修资源预测不准、资源冲突的问题,本文建立了不同作战阶段的多供应中心−多需求点的的动态维修资源优化调度模型,使得多个供应中心可以及时、高效地对需求点进行维修资源调度,减少了资源调度时间和每个需求点的维修资源不满足量。为了更好地求解提出的模型,本文提出了一种改进的多目标进化算法,在经典的多目标进化算法的基础上,使用正态分布交叉算子、全局探索增强型差分进化算子和自适应变异算子的协同进化策略,提高了算法的局部搜索能力和种群的多样性。原创 2023-12-02 19:55:57 · 1550 阅读 · 0 评论 -
基于自适应动态窗口改进细菌算法与移动机器人路径规划
针对移动机器人在复杂环境下的路径规划问题,提出一种新的自适应动态窗口改进细菌算法,并将新算法应用于移动机器人路径规划。改进细菌算法继承了细菌算法与动态窗口算法(dynamic window algorithm, DWA)在避障时的优点,能较好实现复杂环境中移动机器人静态和动态避障。该改进算法主要分三步完成移动机器人路径规划。首先,利用改进细菌趋化算法在静态环境中得到初始参考规划路径。接着,基于参考路径,机器人通过自身携带的传感器感知动态障碍物进行动态避障并利用自适应DWA完成局部动态避障路径规划。原创 2023-12-02 19:52:56 · 1514 阅读 · 0 评论 -
使用改进Yolov5的变电站绝缘子串检测方法
针对变电站绝缘子串水冲洗机器人在复杂光照环境下无法准确识别绝缘子的问题,提出了一种基于改进Yolov5的绝缘子检测方法。首先针对逆光环境下图像质量差导致算法失效的问题,提出了一种模拟过曝增强算法,并应用到数据增强过程中;此外,针对变电站绝缘子检测任务,对网络的Neck进行了优化裁剪,使推理速度获得了提升;最后,使用注意力机制改善了裁剪后网络检测精度下降的问题。实验表明,改进后的Yolov5在检测精度基本不变的情况下推理速度提高了25%,并且对于逆光下图像的检测精度获得了大幅提升。原创 2023-12-02 19:50:54 · 907 阅读 · 0 评论