探索概率分布:Python 可视化多种统计分布(续)——三参数Weibull分布

探索概率分布:Python 可视化多种统计分布(续)——三参数Weibull分布

一、前言

  可靠性模型中常用的分布主要有指数分布、正态分布、对数正态分布和Weibull分布等。其中,最基本的是指数分布,其余分布可视为由指数分布派生而来。威布尔分布由瑞典科学家Waloddi Weibull提出,近年来在可靠性和维修性研究中占据了举足轻重的地位。Weibull分布不仅凭借其强大的建模能力,能够精确刻画多种产品及材料的失效特性,还通过形状参数的灵活性,实现了对失效数据拟合的精细调整。此外,Weibull分布系列广泛涵盖了包括正态分布、指数分布在内的多种分布,进一步证明了其普适性和重要性。特别是Weibull分布的形状参数,对于揭示如疲劳、腐蚀、磨损等复杂故障模式具有不可替代的价值。

  在深入探讨Weibull分布的应用时,我们不得不提及其在概率论与统计学中的广泛应用。作为一种连续概率分布,Weibull分布在可靠性分析和寿命数据分析中扮演着重要角色。而相比于两参数Weibull分布,三参数Weibull分布通过引入位置参数,进一步提升了数据拟合的灵活性和准确性。为了深入研究三参数Weibull分布的特性,本文利用Python中的NumPy、Matplotlib和SciPy库,实现了样本数据的生成与可视化,并采用了Kolmogorov-Smirnov(KS)检验方法,对样本数据是否符合预设分布进行了严格验证。这一研究不仅深化了我们对Weibull分布的理解,也为其在可靠性分析中的进一步应用奠定了坚实基础。

  三参数Weibull分布 W ( β , η , γ ) W(β,η,γ) W(β,η,γ)的概率密度分布函数为
f ( t ; η , β , γ ) = β η ( t − γ η ) β − 1 e − ( t − γ η ) β f(t;\eta ,\beta ,\gamma )=\frac{\beta }{\eta }(\frac{t-\gamma }{\eta })^{\beta -1}e^{-(\frac{t-\gamma }{\eta })^{\beta }} f(t;η,β,γ)=ηβ(ηtγ)β1e(ηtγ)β
式中, η η η β β β、和 γ γ γ分别称为尺度参数、形状参数和位置参数。当 γ = 0 γ=0 γ=0时,模型退化为两参数威布尔分布。

  三参数Weibull分布 W ( β , η , γ ) W(β,η,γ) W(β,η,γ)的累积分布函数为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值