误差合成原理的实际应用——测量误差的分配
在间接测量中,有时要根据间接被测参数(尺寸)总的极限测量误差要求,来确定各个有关的直接测量参数(尺寸)的测量误差要求,并据以选择测量方法。由于各直接测量参数大小不一,重要性不同,测量的难易程度也不一样,所以分配到的误差值也应不同。
具体进行误差分配时,可先设各个“ ( ∂ f / ∂ x i ) δ lim x i (\partial f/\partial x_{i})\delta _{\lim x_{i}} (∂f/∂xi)δlimxi”都相等,求出各个 δ lim x i \delta _{\lim x_{i}} δlimxi值,再互相合理调配,但最后仍最满足误差关系式的要求。
例1 测量一圆柱体的体积, V = π D 2 4 h V=\frac{\pi D^{2}}{4}h V=4πD2h,要求相对误差不超过1%,试决定用什么量具来测量其直径 D D D和高 h h h?已知 D 公称 = 20 m m D_{公称}=20mm D公称=20mm, h 公称 = 50 m m h_{公称}=50mm h公称=50mm。
解:
V = π D 2 4 h = π × 2 0 2 4 × 50 = 5000 π m m 3 V=\frac{\pi D^{2}}{4}h=\frac{\pi \times 20^{2}}{4}\times 50=5000\pi \, mm^{3} V=4πD2h=4π×202×50=5000πmm3
δ lim V = V × 1 \delta _{\lim V}=V\times 1%=50\pi \, mm^{3} δl