这一节主要讲解误差的合成与分配。
1 误差的合成
1)随机误差的合成
随机误差的合成采用方和根的方法,同时考虑各个误差传递系数和误差间的相关性影响。合成可按标准差和极限误差两种方式进行。
-
标准差的合成
-
极限误差的合成
2)系统误差的合成 -
已定系统误差,采用代数和法,可修正
- 未定系统误差,采用方和根法
3)系统误差与随机误差的合成
当测量过程中存在各种不同性质的多项系统误差与随机误差,应将其进行综合,以求得最后测量结果的总误差,并常用极限误差来表示,也可用标准差表示。
- 按极限误差合成
- 按标准差合成
4)误差传递系数的确定 - 微分法求传递系数
- 通过几何关系求传递系数
- 按传动关系确定传递系数
- 通过实验确定传递系数
5)相关系数的估计
在误差合成计算时,各误差间的相关性对计算结果有影响。误差合成公式中的相关项反映了各随机误差相互间的线性关联对函数误差的影响大小。
多数测量误差间线性无关或近似线性无关。若存在线性相关或相关性不能忽略时,必须先求出各个误差间的相关系数,然后才能进行误差合成计算。
确定误差间的相关系数:
- 直接判断法
- 试验观察(绘图查看)
- 简单计算法
- 直接计算法(相关系数定义)
- 理论计算法(概率论和最小二乘法)
2 微小误差取舍准则
测量过程中有多种误差,但有些误差对测量结果总误差影响较小。当这种误差数值小到一定程度后,计算测量结果总误差时可不予考虑,则称这种误差为微小误差。为了确定误差数值小到什么程度才能作为微小误差予以舍去,需要给出一个微小误差的取舍准则。
上式可以写成下列形式:
因此,对于随机误差和未定系统误差,微小误差舍去准则是被舍去的误差必须小于或等于测量结果总标准差的1/10-1/3。高精度仪器的误差标准是1/10-3/10。
3 误差分配
误差分配应考虑测量过程中所有误差组成项的分配问题。对于已定系统误差,可用修正方法来消除,故不必考虑各个测量值已定系统误差的影响,只需研究随机误差和未定系统误差的分配问题。
- 按等作用原则分配误差
- 按可能性调整误差
按等作用原则分配误差可能出现不合理情况以及测量值误差不相等情况,因此需根据实际情况分配(难以测量的误差适当扩大,容易实现测量的误差项尽可能缩小)。
- 验算调整后的总误差
误差分配后,应按误差合成公式计算实际总误差,若超出给定的允许误差范围,应选择可能缩小的误差项再予以缩小误差。若实际总误差较小,可适当扩大难以测量的误差项的误差。
按等作用原则分配误差需注意,当有的误差已经确定而不能改变时(受测量条件限制,必须采用某种仪器测量某一项目时),应先从给定的允许总误差中将其除掉,然后对其余误差项进行误差分配。