目录
1 引言
心电信号是医学领域中常见的生物信号之一,它可以反映心脏电活动和心脏健康状况。心电信号分类是对心电信号进行自动化分类的关键任务,传统的人工方式往往费时费力。而借助人工智能(Artificial Intelligence,AI)技术,特别是传统机器学习和深度学习方法,可以有效地实现自动化分类和准确诊断。
2 传统机器学习中的特征提取与选择
在传统机器学习方法中,特征提取与选择是心电信号分类的重要步骤。通过提取时域、频域和时频域等特征,可以描述心电信号的基本形态和变化趋势。接下来,我们利用特征选择方法,如相关性分析、统计检验和主成分分析等,从大量的特征中筛选出最具有代表性的特征,以提高分类性能和减少计算复杂度。
本文探讨了人工智能在心电信号分类中的应用,比较了传统机器学习与深度学习在特征提取与选择上的方法,强调了两者在心电自动化分类中的优势与局限,并指出其在心脏疾病早期诊断中的潜力。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



