在现代电子商务中,推荐系统已经成为提升用户体验和增加销售额的重要工具。通过深度学习技术,我们可以构建一个智能推荐系统,精准地为用户推荐他们可能感兴趣的商品。本文将详细介绍如何使用Python和深度学习库TensorFlow与Keras来实现一个智能电子商务推荐系统。
一、推荐系统简介
推荐系统是一种信息过滤系统,通过分析用户的历史行为和偏好,为用户推荐可能感兴趣的商品。常见的推荐系统包括基于内容的推荐、协同过滤推荐和混合推荐系统。
二、环境准备
在开始构建推荐系统之前,我们需要安装必要的Python库:
pip install tensorflow pandas numpy matplotlib scikit-learn
三、数据准备
假设我们有一个包含用户购买历史记录的CSV文件,数据包括用户ID、产品ID和评分等。我们将使用这些数据来训练我们的模型。
import pandas as pd