实时数据流处理的利器:如何利用 Spark Streaming 让数据动起来?
在这个数据爆炸的时代,企业不仅仅需要存储数据,更需要实时处理数据,以便做出敏捷决策。无论是电商监控用户行为、金融风控识别欺诈,还是物联网设备监测,流式数据处理 都已经成为不可或缺的一环。而在大数据技术栈中,Spark Streaming 以其高效、可扩展的特性成为实时数据流处理的首选工具之一。
今天,我们就来聊聊 如何用 Spark Streaming 构建实时数据处理系统,并通过 Python 代码实战演示,让数据在流动中创造价值。
一、为什么选择 Spark Streaming?
传统的大数据处理方式主要依赖 批处理(Batch Processing),例如 Hadoop,虽然适合处理大规模数据,但无法满足实时性要求。而 Spark Streaming 采用 微批处理(Micro-Batch Processing