代码随想录阅读笔记-数组【螺旋矩阵II】

题目

给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。

示例:

输入: 3

输出: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ]

思路

这道题目可以说在面试中出现频率较高的题目,本题并不涉及到什么算法,就是模拟过程,但却十分考察对代码的掌控能力。

要如何画出这个螺旋排列的正方形矩阵呢?

相信很多人刚开始做这种题目的时候,上来就是一波判断猛如虎。结果运行的时候各种问题,然后开始各种修修补补,最后发现改了这里那里有问题,改了那里这里又跑不起来了。

我在这个系列的第一个博客中讲解了二分法,提到如果要写出正确的二分法一定要坚持循环不变量原则

而求解本题依然是要坚持循环不变量原则。

模拟顺时针画矩阵的过程:

  • 填充上行从左到右
  • 填充右列从上到下
  • 填充下行从右到左
  • 填充左列从下到上

由外向内一圈一圈这么画下去。

可以发现这里的边界条件非常多,在一个循环中,如此多的边界条件,如果不按照固定规则来遍历,那就是一进循环深似海,从此offer是路人

这里一圈下来,我们要画每四条边,这四条边怎么画,每画一条边都要坚持一致的左闭右开,或者左开右闭的原则,这样这一圈才能按照统一的规则画下来。

这里引用原文中作者画的左闭右开的情况,大家做一参考:

这里每一种颜色,代表一条边,我们遍历的长度,可以看出每一个拐角处的处理规则,拐角处让给新的一条边来继续画。这也是坚持了每条边左闭右开的原则。

这道题目的核心就是掌握边界条件的一致性,如果在画每一条边的时候,一会左开右闭,一会左闭右闭,一会又来左闭右开,就会非常混乱。

代码如下,已经详细注释了每一步的目的,可以看出while循环里判断的情况是很多的,代码里处理的原则也是统一的左闭右开。

整体C++代码如下:

class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
        int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
        int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
        int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
        int count = 1; // 用来给矩阵中每一个空格赋值
        int offset = 1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位
        int i,j;
        while (loop --) {
            i = startx;
            j = starty;

            // 下面开始的四个for就是模拟转了一圈
            // 模拟填充上行从左到右(左闭右开)
            for (j = starty; j < n - offset; j++) {
                res[startx][j] = count++;
            }
            // 模拟填充右列从上到下(左闭右开)
            for (i = startx; i < n - offset; i++) {
                res[i][j] = count++;
            }
            // 模拟填充下行从右到左(左闭右开)
            for (; j > starty; j--) {
                res[i][j] = count++;
            }
            // 模拟填充左列从下到上(左闭右开)
            for (; i > startx; i--) {
                res[i][j] = count++;
            }

            // 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
            startx++;
            starty++;

            // offset 控制每一圈里每一条边遍历的长度
            offset += 1;
        }

        // 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
        if (n % 2) {
            res[mid][mid] = count;
        }
        return res;
    }
};
  • 时间复杂度 O(n^2): 模拟遍历二维矩阵的时间
  • 空间复杂度 O(1)

代码中巧妙地找到了题目的规律,运用类似分治的思想,将大的矩阵分为四个操作的循环(上行左到右,右列上到下,下行右到左,左列下到上),所有的矩阵都可以用loop(n/2,这个应该是规律,比如n=4,5时边长为4和5,都需要两次循环才能绘制,n为5时因为最中间有一个小格子所以需要单独处理)个这个四个操作的循环进行绘制。所以代码中使用一个大的循环,代表loop次组合操作,在每次循环中依据上述提到的四个操作进行(每个操作分别使用一个for循环进行赋值),需要注意的是,在每次大循环即将结束时,需要将行列的起始位置各自加一,并且将代码中控制遍历长度的offset加一(因为循环条件中遍历长度用n-offset表示,所以外圈绘制完成后需要让遍历长度减一,即对offset加一),最后需要对n进行判断,如果是奇数,代表一定存在最中心的一个格子,这个格子是无法通过上述的四个操作绘制的,因为它只有一个,不符合我们前面定义的左闭右开的区间概念,所以我们只需要在最后对此进行判断,然后单独进行赋值即可。

类似题目 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值