词嵌入模型word2vec

引言解释

词嵌入即利用向量来表示单词,表示原则是一个单词的意思是由经常出现在它附近的单词给出的,即我们需要刻画单词的上下文关系。转化成数学就是,我们需要构建一个词空间,用词空间里的向量来表示单词,相似词对应的词向量在空间上距离近

如何去构建一个词向量空间呢,我们延续上文神经语言模型_逐段解读的方法,利用神经网络的方法。但是,我们并不需要进行完整的NNLM(非线性层的计算量非常大),我们只需要前面的线性部分,构造一个简单(计算量相比NNLM小)对数线性分类器(log-linear classifier)就可以。

计算方法

CBOW

CBOW

CBOW的结构是利用上下文来求中心词的线性对数分类器,最终获取从输入到Projection层的权重作为词向量矩阵(空间)。
CBOW是Continuous Bag-of-Words Model,有点类似NNLM,但是它没有非线性的隐藏层,且线性层(projection layer)是共享给词库中所有词,而不是像NNLM一样只供输入词使用。同时这里考虑上下文,而不是仅考虑上文。
之所以称之为bag of words是因为这里对上下文进行求平均组成一个向量来预测中心词。忽略了上下文的语序。continuous则是因为这里选取的上下文是连续的(虽然在后续处理中不考虑语序)
具体训练的数学推到公式如下
1)假定输入上下文分别为 w t − 2 , w t − 1 , w t + 1 , w t + 2 w_{t-2},w_{t-1},w_{t+1},w_{t+2} wt2,wt1,wt+1,wt+2,可以根据词库表 V V V获取相应的one-hotting向量,进一步得到初始化词向量分别为 x t − 2 , x t − 1 , x t + 1 , x t + 2 x_{t-2},x_{t-1},x_{t+1},x_{t+2} xt2,xt1,xt+1,xt+2,这里词向量的获取方法实际上就是one-hotting向量乘以词向量矩阵,这也是Projection层得来的原因,这里的词向量矩阵的参数实际上就是全连接的Projection层的网络权重。
x t − 2 , x t − 1 , x t + 1 , x t + 2 x_{t-2},x_{t-1},x_{t+1},x_{t+2} xt2,xt1,xt+1,xt+2取向量元素级平均,得到$\bar{x} $
2)对于此表中任何一个词 b b b,我们可以通过神经网络线性分类器的前向输出,得到这个词属于中心词的概率,为 P ( b ∣ w t − 2 , w t − 1 , w t + 1 , w t + 2 ) = e x ˉ ′ y ∑ a ∈ V e x ˉ ′ a P(b|w_{t-2},w_{t-1},w_{t+1},w_{t+2}) = \frac{e^{\bar{x}'y}}{\sum_{a \in V}e^{\bar{x}'a}} P(bwt2,wt1,wt+1,wt+2)=aVexˉaexˉy
这里的 y y y是词b在输出矩阵(从Projection到预测层之间的权重)对应行的向量。
3) 重复上述步骤2),可以得到词库表 V V V中每一个词属于中心词的概率,拼起来可以得到一个概率向量 y ~ \tilde{\bold{y}} y~
4) 已知真实的中心词是 w t w_t wt,转化成one-hotting向量是 y \bold{y} y,可以利用交叉熵作为损失函数(原因可以参见为什么交叉熵(cross-entropy)可以用于计算代价? - 微调的回答 - 知乎),这样可以得到损失函数为 J ( θ ) = − y l o g y ~ = − w t log ⁡ P ( b ∣ w ) J(\theta) = - \bold{y} log \tilde{\bold{y}}=-w_t\log{P(b|w)} J(θ)=ylogy~=wtlogP(bw)。这一步等式的原因是 y \bold{y} y是one-hotting,这里的 θ \theta θ是向量的权重,也就是神经网络的参数
5) 利用损失函数进行SGD,不断训练迭代最终可以得到最优的 θ \theta θ,进而得到最优词向量矩阵,得到最优词向量。
至于为什么梯度下降法训练得到的结果,预测出来的是接近正确的上下文,可以参考梯度下降的数学解释,这里因为符号标记不一样,我就不展开说了。

skip-gram

在这里插入图片描述
skip-gram是基于中心词预测上下文的对数线性分类器。重点的区别在Projection层到预测层。
预测层需要输出2m个上下文(上下文的半径为m),所以输出概率也是2m个,公式如下:
P ( w c , j = w o , c ∣ w I ) = e x ′ y o , c ∑ a ∈ V x ′ a P(w_{c,j} = w_{o,c}|w_I) = \frac{e^{x'y_{o,c}}}{\sum_{a \in V}x'a} P(wc,j=wo,cwI)=aVxaexyo,c
这里 w o , c w_{o,c} wo,c是真实的上下文词, y o , c y_{o,c} yo,c该词在输出矩阵对应行的向量。
这里有2个坑:

  1. 我一开始理解预测输出的时候应该是采用topk的方法,只输出概率值最大的k(=2m)个词作为上下文,后来发现这里的skip-gram只是用于训练得到中间层作为权重,所以只需要将真实上下文对应向量做训练就好,没有输出topk的步骤
  2. 虽然输入词只有一个,但是不意味着训练好的中间层就是输入词的词向量,只有训练好的输入矩阵,才是词向量的组合。
    损失函数计算中,因为这里不考虑输出词之间的顺序,我们这边假设词之间是独立的,采用naive bayes
    J = − l o g P ( w o , 1 , w o , 2 , . . . , w o , c ∣ w I ) = − ∑ i = 1 c l o g e x ′ y o , i ∑ a ∈ V x ′ a J = -logP(w_{o,1},w_{o,2},...,w_{o,c}|w_I) = -\sum_{i = 1}^c log\frac{e^{x'y_{o,i}}}{\sum_{a \in V}x'a} J=logP(wo,1,wo,2,...,wo,cwI)=i=1clogaVxaexyo,i

优化技巧:softmax

word2vec的计算瓶颈在于softmax层的计算,因为softmax分母需要对此表中所有词都进行向量乘计算,每一次训练都需要更新迭代,计算量非常大。
为此,有两种优化方法来解决这一问题,分别是negative sampling和hierarchical softmax

negative sampling

negative sampling的方法非常直观,因为相比真实的输出值(设为正样本,输出为1),假的输出值(负样本)数量是巨大的( ∣ V ∣ − 1 |V|-1 V1),所以对负样本进行抽样选取训练,减少计算量。
Mikolov推荐使用的负样本抽样分布是 P ( w ) = f ( w i ) 3 4 ∑ j = 0 n f ( w j ) 3 4 P(w) = \frac{f(w_i)^{\frac{3}{4}}}{\sum_{j=0}^n f(w_j)^{\frac{3}{4}}} P(w)=j=0nf(wj)43f(wi)43,这里 f f f是均匀分布
这个分布的好处是提升低频词相对被抽中的概率。详细见这个指数幂的图
在这里插入图片描述

hierarchical softmax

分层softmax,其结构就是一个霍夫曼树,首先介绍一下霍夫曼树。
基本概念:
路径:从根节点到结点通路长度
权值:赋予结点的数值,w2v里是频数
结点带权路径:结点路径*结点权值
树的带权路径:所有叶子结点的带权路径之和
霍夫曼树:使树带权路径最小的二叉树
霍夫曼树的构造方法:
1)将 w 1 , w 2 , . . . , w n {w_1,w_2,...,w_n} w1,w2,...,wn看成是n棵树的森林
2)从森林中选择根节点权值最小的两棵树合并,作为一棵新树的左右子树,且新树的根节点权值为左右子树根节点权值的和
3)从森林中删除选取的两棵树,并将新树加入森林
4)重复2),3)两步,直到森林中只剩下一棵树为止,该树即为霍夫曼树
从网上找到一个例子。以词频作为权值,可以看出,高频词离根节点最近,最容易被访问。
在这里插入图片描述
作为hierarchical softmax,是将隐藏层(Projection)到输出层这一部分(也就是输出矩阵)变成霍夫曼树。霍夫曼树中,根节点是隐藏层向量,叶子节点是可能输出词,大小和词库一致。
在这里插入图片描述
具体来说,输入利用二元逻辑回归方法分左右支流动,最终输出叶子节点。从根节点流动到叶子节点得到的路径概率就是该单词输出的概率,因此,相比原先计算每一个单词输出概率需要计算V次(softmax分母),利用这个方法仅需要计算 log ⁡ V \log{V} logV次(二叉树)
在这里插入图片描述
这里 n n n表示内部节点, c h ch ch表示任意一个节点,论文中默认左边节点, [ x ] : 1 i f x i s T r u e e l s e − 1 [x]: 1 if x is True else -1 [x]:1ifxisTrueelse1,结合sigmoid可以推断, σ ( x ) + σ ( − x ) = 1 \sigma(x)+\sigma(-x) = 1 σ(x)+σ(x)=1,进一步,可以推断, ∑ i = 0 V p ( w i = w o ) = 1 \sum_{i=0}^Vp(w_i=w_o) = 1 i=0Vp(wi=wo)=1

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值