多模态学习入门和实践

本文介绍了多模态学习的基本概念,包括Representation、对齐、翻译和融合等主要任务。重点讨论了如何通过多模态数据的互补性和协同学习来提升模型性能,并提到了对齐和融合的挑战,如模态间相关性的判断和非同步数据的配准。此外,还提及了协同学习如何利用丰富资源模态辅助学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念

模态(Modality) 事物发生的方式

主要任务

Representation

学习将多模态数据整合到一个特征表示中。其中,通过利用多模态之间的互补性,剔除模态间的冗余性,从而学习到更好的特征表示。(如下例子)
在这里插入图片描述
展现方式主要如下:
joint联合在一个展现空间中
coordinated,不同模态展现在不同空间中,但空间之间相互约束
在这里插入图片描述

对齐

将多模态的元素对齐
在这里插入图片描述

翻译

将某种模态的数据转化成另一种模态
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值