2. LangChain4j 之AI Services

一: AI Services介绍

        LangChain4j提供了很多基础的组件,每次使用都需要你编写大量的样板代码,LangChain4j就提供了一个高级的组件AI Services,它可以简化与大模型(LLM)和其他组件交互的复杂度。让开发者更专注于业务逻辑,而不是底层的实现细节。

        通过AiServices来封装聊天模型API,实现会话记忆,工具调用,搜索增强,内容审查等功能,并提供简单灵活的用户接口 DefaultAiServices是其默认实现类型,通过动态代理的方式实现用户定义的服务接口


二: AI Services功能

  • 处理LLM的输入
  • 解析LLM的输出
  • Chat memory 聊天信息存储器
  • Tools 工具调用
  • RAG 检索增强生成

三: AI Services工作原理

    我们定义一个接口,并将接口的class和LangChain4j的基础组件一起传给AiServices,而AiServices则通过反射创建一个实现此接口的Jdk代理对象。当我们使用这个代理对象去执行方法时,就会去执行代理逻辑,组装UserMessage和SystemMessage对象,然后去调用大模型的接口,返回结果.

### LangChain4J 调用通义千问 示例代码 对于希望利用 Java 生态系统中的工具来开发基于大模型的应用程序开发者来说,LangChain4J 提供了一种途径去连接不同的 AI 组件和服务。当涉及到调用特定 API 如阿里云的通义千问时,可以遵循如下方法配置环境以及编写必要的代码片段。 #### 配置依赖项 为了能够在项目里使用 LangChain4J 和访问通义千问服务,首先需要确保 Maven 或 Gradle 构建文件中有相应的依赖声明: ```xml <!-- 对于Maven用户 --> <dependency> <groupId>com.github.hankcs</groupId> <artifactId>langchain4j-core</artifactId> <version>LATEST_VERSION_HERE</version> </dependency> <dependency> <groupId>com.aliyun</groupId> <artifactId>tea-openapi</artifactId> <version>LATEST_VERSION_HERE</version> </dependency> ``` #### 初始化客户端并设置参数 接下来,在应用程序启动阶段初始化 LangChain 实例,并通过适当的方式传递所需的认证信息(例如 AccessKey ID 和 Secret),这一步骤有助于保护敏感数据不被硬编码到源码中[^1]。 ```java import com.alicloud.openservices.tablestore.sync.Client; import com.aliyun.teaopenapi.models.Config; public class QwenClientInitializer { private static final String ACCESS_KEY_ID = System.getenv("ALIYUN_ACCESS_KEY_ID"); private static final String ACCESS_SECRET = System.getenv("ALIYUN_ACCESS_SECRET"); public static Client createQwenApiClient() throws Exception { Config config = new Config() .setAccessKeyId(ACCESS_KEY_ID) .setAccessKeySecret(ACCESS_SECRET); // 假设这里返回的是适配了通义千问接口的具体实现类对象 return new CustomizedTableStoreClient(config); } } ``` #### 编写查询逻辑 最后定义具体的业务处理函数,该部分负责组装请求体并向远程服务器发送 HTTP 请求获取响应结果。下面给出一段简单的例子展示如何发起一次文本生成任务给通义千问API[^2]。 ```java import java.util.Map; public class TextGenerationService { private final Client qwenApi; public TextGenerationService(Client client) { this.qwenApi = client; } /** * 发送提示词至通义千问以获得回复. */ public Map<String, Object> generateText(String prompt) throws Exception { // 这里的具体实现取决于实际使用的SDK版本及其文档说明 var requestParams = Map.of( "prompt", prompt, "max_tokens", 50L ); // 执行API调用... return (Map<String, Object>)qwenApi.callSomeMethod(requestParams); } } ``` 上述代码展示了如何借助 LangChain4J 来简化与外部AI服务之间的交互过程,同时也强调了安全实践的重要性——即避免直接暴露 API 密钥等重要凭证[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gorgor在码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值