数学建模学习(90):改进的灰狼优化算法(I-GWO)对多元函数寻优

本文介绍了改进的灰狼优化算法(I-GWO),旨在解决全局优化和工程设计问题,特别是针对GWO算法的不足进行了改进,引入基于维度学习的狩猎(DLH)搜索策略,增强种群多样性并平衡局部和全局搜索。通过案例实现,包括目标函数定义、算法编写、结果获取和可视化,展示了I-GWO在实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

灰狼优化算法暂且不说了,本篇直奔改进的灰狼算法进行案例实践学习。

声明:即使订阅本专栏,也不可转载到它出,甚至商业用途。

一、简介

在论文中,论文作者提出了一种改进的灰狼优化器(I-GWO),用于解决全局优化和工程设计问题. 提出这一改进是为了缓解 GWO 算法缺乏种群多样性、开发和探索之间的不平衡以及过早收敛的问题。I-GWO 算法受益于一种新的运动策略,称为基于维度学习的狩猎 (DLH) 搜索策略,该策略继承自自然界中狼的个体狩猎行为。DLH 使用不同的方法为每只狼构建一个邻域,其中邻域信息可以在狼之间共享。DLH 搜索策略中使用的这种维度学习增强了局部和全局搜索之间的平衡并保持了多样性。
在这里插入图片描述

参考文献:

https://www.sciencedirect.com/science/article/abs/pii/S0957417420307107?via%3Dihub

二、案例实现

2.1 目标函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川川菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值