机器学习案例(十一):水质分析与预测

本文探讨了水质预测的机器学习案例,分析了影响饮用水安全的各项因素,包括pH值、硬度、溶解固体等,并展示了数据探索和模型建立的过程,以预测水样是否适合饮用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安全饮用水是全人类的基本需求之一。从法律的角度来看,获得饮用水是一项基本人权。影响水质的因素很多,也是机器学习的主要研究领域之一。它也被称为饮用水分析,因为我们的任务是了解影响饮用水的所有因素,并训练一个机器学习模型,该模型可以对特定水样是否安全或不适合饮用进行分类。

对于水质分析任务,其中包含有关影响水可饮用性的所有主要因素的数据。所有影响水质的因素都非常重要,因此我们需要在训练机器学习模型之前简要探索该数据集的每个特征,以预测水样是否安全或不适合饮用。

一、数据集

下载:

https://raw.githubusercontent.com/amankharwal/Website-data/master/water_potability.csv

如下:
在这里插入图片描述

二、案例实践

2.1 读取数据

import matplotlib.pyplot 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川川菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值